exercises
This commit is contained in:
315
YZM526/ex01-python_ve_istatistik.ipynb
Normal file
315
YZM526/ex01-python_ve_istatistik.ipynb
Normal file
@@ -0,0 +1,315 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "0.0"
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import scipy.stats as st\n",
|
||||
"\n",
|
||||
"# ortalamsı 0, std.spaması 10 olan bir rastegle değişken tanımlayalım\n",
|
||||
"n = st.norm(0, 10)\n",
|
||||
"\n",
|
||||
"n.mean()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "10.0"
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"n.std()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "30000.0"
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"n.moment(4)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "0.03989422804014327"
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# rvs : random variates\n",
|
||||
"# pdf : probability density function\n",
|
||||
"# cdf : cumulative distribution func\n",
|
||||
"# sf : survival func (1 - cdf)\n",
|
||||
"# ppf : percent point func (inverse of sf)\n",
|
||||
"# isf : inverse survival func\n",
|
||||
"\n",
|
||||
"n.pdf(0)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "0.5"
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"n.cdf(0)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "array([14.47370202, -3.16015903, 10.71787186, 5.92254866, -0.93282238,\n -0.27714311, -8.24859593, -1.01334594, 3.70286296, 11.99284959])"
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Rastgele örneklem oluşturalım. Bu örneklemin ortalaması 0, std. sapması 10 olacaktır\n",
|
||||
"n.rvs(10)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "(0.0, 0.0, 100.0)"
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"n.mean(), n.median(), n.var()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "ShapiroResult(statistic=0.9902140498161316, pvalue=0.6819034218788147)"
|
||||
},
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Shapiro-Wilks testi, verilerin normal bir dağılımdan alındığına dair yokluk hipotezini test eder\n",
|
||||
"\n",
|
||||
"st.shapiro(n.rvs(100))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sympy import stats, sqrt,exp, pi\n",
|
||||
"\n",
|
||||
"X = stats.Normal('x', 0, 10)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "sqrt(2)*exp(-x**2/200)/(20*sqrt(pi))",
|
||||
"text/latex": "$\\displaystyle \\frac{\\sqrt{2} e^{- \\frac{x^{2}}{200}}}{20 \\sqrt{\\pi}}$"
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# X rastgele değişkeninin olasılık yoğunluk fonksiyonu\n",
|
||||
"from sympy.abc import x\n",
|
||||
"stats.density(X)(x)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "1/2",
|
||||
"text/latex": "$\\displaystyle \\frac{1}{2}$"
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Toplam dağılım fonksiyonun bir noktadaki değeri\n",
|
||||
"stats.cdf(X)(0)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "1/2",
|
||||
"text/latex": "$\\displaystyle \\frac{1}{2}$"
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Standart olasılık sorularını cevaplamak için sezgisel yol kullanımı\n",
|
||||
"stats.P(X>0)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Standart olasılık sorularını cevaplamak için sezgisel yol kullanımı\n",
|
||||
"stats.P(X>0)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Beklenen değerler\n",
|
||||
"stats.E(abs(X) ** (1 / 2)).evalf()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Diğer python istatistik modülleri\n",
|
||||
"* Seaborn: Keşifçi veri analizi (EDA Explatory Data Analysis) için kullanılır\n",
|
||||
"* Statsmodel: Çok çeşitli istiksel modeller için tanımlayıcı istatistikler, tahminler ve çıkarımlar ile SciPy'ı tamamlamak üzere tasarlanmıştır. Statsmodel ayrıca ekonometrik veri ve problemlere vurgu yaparak zaman serisi analizi için yöntemler ve genelleştirilmiş doğrusal modeller de içerir."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
420
YZM526/ex02-konum_ve_degiskenlik_olculeri.ipynb
Normal file
420
YZM526/ex02-konum_ve_degiskenlik_olculeri.ipynb
Normal file
@@ -0,0 +1,420 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Konum Ölçüleri\n",
|
||||
"Konum ölçüleri, analiste verinin merkezinin veya başka nir konumun bulunduğu yerin nicel değerini elde etmeye yarar."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[10, 13, 14, 15, 17, 19, 20, 22, 24, 35, 39, 40, 43, 53, 53, 54, 55, 78, 81, 82, 82, 83, 86, 87, 90, 92, 94, 96, 99, 99]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import random\n",
|
||||
"import datetime\n",
|
||||
"\n",
|
||||
"sd = datetime.datetime.timestamp(datetime.datetime.now()) * 1000\n",
|
||||
"random.seed(sd)\n",
|
||||
"\n",
|
||||
"veri = [random.randint(10, 100) for _ in range(30)]\n",
|
||||
"veri.sort()\n",
|
||||
"\n",
|
||||
"print(veri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"veri = [10, 14, 14, 17, 21, 21, 24, 27, 28, 30, 33, 35, 38, 41, 41, 42, 49, 51, 53, 54, 54, 60, 62, 71, 74, 76, 77, 77,\n",
|
||||
" 79, 87]"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "45.333333333333336"
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Ortalama\n",
|
||||
"import statistics\n",
|
||||
"\n",
|
||||
"statistics.mean(veri)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "41.5"
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Medyan\n",
|
||||
"# Örneklemin merkezi eğilimini aşırı (aykurı) değerlerden etkilenmeyecek şekilde yansıtmaktır.\n",
|
||||
"# Öncelikle küçükten, büyüğe sıralama\n",
|
||||
"# n tek ise -> ortadaki gözlem\n",
|
||||
"# n çit ise -> ortadaki iki gözlemin aritmatik ırtalması\n",
|
||||
"\n",
|
||||
"statistics.median(veri)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "[14, 21, 41, 54, 77]"
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Mod: tepe noktası. En çok tekrarlayan değer\n",
|
||||
"statistics.multimode(veri)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "[26.25, 41.5, 64.25]"
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Çeyrekler / Kartiller / Quartiles\n",
|
||||
"# Q1: en küçük %25 i ayıran değer = .25 * (n+1) inci değer\n",
|
||||
"# Q2: en küçük %50 yi ayıran değer = medyan = .50 * (n+1)\n",
|
||||
"# Q3: en küçük %75 i ayıran değer = .75 * (n + 1)\n",
|
||||
"\n",
|
||||
"# Nasıl hesaplıyoruz\n",
|
||||
"# örneğin veride 12 rakam var\n",
|
||||
"# bu durumda .25 * (12 + 1) = 3.25 inci değeri bulmalız\n",
|
||||
"# varsayalım 3. değer : 65, 4. değer ise 67 olsun\n",
|
||||
"# Q1 = 65 + .25 * (67-65) = 65.5 olacaktır\n",
|
||||
"\n",
|
||||
"statistics.quantiles(veri)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Bir örneklemin beş sayılı özeti\n",
|
||||
"* min\n",
|
||||
"* Q1\n",
|
||||
"* Q2\n",
|
||||
"* Q3\n",
|
||||
"* max"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Ortalama: 73.17 :: Medyan 73.5 :: 5 Sayılı Özet: 60 65.5 73.5 81.5 85\n",
|
||||
"Ortalama: 144.46 :: Medyan 75 :: 5 Sayılı Özet: 60 66.0 75.0 83.0 1000\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"veriSeti = [60, 63, 65, 67, 70, 72, 75, 75, 80, 82, 84, 85]\n",
|
||||
"\n",
|
||||
"qs = statistics.quantiles(veriSeti)\n",
|
||||
"med = statistics.median(veriSeti)\n",
|
||||
"print(\"Ortalama: \", round(statistics.mean(veriSeti), 2),\n",
|
||||
" \" :: Medyan\", med,\n",
|
||||
" \" :: 5 Sayılı Özet:\", veriSeti[0], qs[0], qs[1], qs[2], veriSeti[-1])\n",
|
||||
"\n",
|
||||
"# Veriye extrem bir değer / aykırı bir gözlem ekleyelim\n",
|
||||
"veriSetiExtrem = [60, 63, 65, 67, 70, 72, 75, 75, 80, 82, 84, 85, 1000]\n",
|
||||
"qs = statistics.quantiles(veriSetiExtrem)\n",
|
||||
"med = statistics.median(veriSetiExtrem)\n",
|
||||
"print(\"Ortalama: \", round(statistics.mean(veriSetiExtrem), 2),\n",
|
||||
" \" :: Medyan\", med,\n",
|
||||
" \" :: 5 Sayılı Özet:\", veriSetiExtrem[0], qs[0], qs[1], qs[2], veriSetiExtrem[-1])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# standard numpy and matplotlib library imports\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"def dotplot(input_x, **args):\n",
|
||||
" # Count how many times does each value occur\n",
|
||||
" unique_values, counts = np.unique(input_x, return_counts=True)\n",
|
||||
"\n",
|
||||
" # Convert 1D input into 2D array\n",
|
||||
" scatter_x = [] # x values\n",
|
||||
" scatter_y = [] # corresponding y values\n",
|
||||
" for idx, value in enumerate(unique_values):\n",
|
||||
" for counter in range(1, counts[idx]+1):\n",
|
||||
" scatter_x.append(value)\n",
|
||||
" scatter_y.append(counter)\n",
|
||||
"\n",
|
||||
" # draw dot plot using scatter()\n",
|
||||
" plt.scatter(scatter_x, scatter_y, **args)\n",
|
||||
"\n",
|
||||
" # Optional - show all unique values on x-axis.\n",
|
||||
" # Matplotlib might hide some of them\n",
|
||||
" plt.gca().set_xticks(unique_values)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Nitrojen Yok Ortalama, Mod, Medyan 0.399 0.4 0.43\n",
|
||||
"Nitrojen Var Ortalama, Mod, Medyan 0.565 0.505 0.26\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"nitrojen_yok = [.32, .53, .28, .37, .47, .43, .36, .42, .38, .43]\n",
|
||||
"nitrojen_var = [.26, .43, .47, .49, .52, .75, .79, .86, .62, .46]\n",
|
||||
"\n",
|
||||
"print(\"Nitrojen Yok Ortalama, Mod, Medyan\", statistics.mean(nitrojen_yok), statistics.median(nitrojen_yok), statistics.mode(nitrojen_yok))\n",
|
||||
"print(\"Nitrojen Var Ortalama, Mod, Medyan\", statistics.mean(nitrojen_var), statistics.median(nitrojen_var), statistics.mode(nitrojen_var))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Her iki veri setinin de mod, medyan ve ortalama değerleri çok benzer. Bir de görsel olarak bakalım"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGsCAYAAADew6NRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+LklEQVR4nO3de1yUZeL//zcgGIqCaJ4PpQaZ4obH1jTWtMxj0Wk7uKaJtqtZuummVrtp7kf7amZp7qqlqWlZiZableaW5abmqgVKSp7yhCcQUBE5ze8PfnPvDMwMMMzAwP16Ph48HjPc99zXNfdp3nPd132Nn8VisQgAAMCk/Cu7AgAAAJWJMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEytRmVXwBd06dJFOTk5uv766yu7KgAAoJTOnz+voKAg/fe//y3XcghDkq5du6b8/PzKrgYAACiDvLw8eWLsaMKQpIYNG0qStmzZUsk1AQAApdWnTx+PLIc+QwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNQIQwAAwNTKfGt9Xl6edu7cqW3btunHH3/U0aNHdenSJQUHB6tly5bq0aOHHn30UTVr1swjFbx06ZKWL1+uTZs26eTJk5Kk5s2b6+6779bw4cMVEhLikXIAAIA5+VnKOFrR4MGDlZyc7HKe4OBg/e1vf1NsbGy5Knfo0CGNGjVKp0+fdji9adOmevvtt9WmTZtylWMdp4BxhgAAqDo89fld5pahK1euyM/PTz169NA999yj6OhoXX/99bp06ZK+/fZbvfnmm0pPT9eUKVMUHh6umJgYtyp2+fJljR49WqdPn1atWrU0ceJEuzc9Z84cnT59WqNGjdKnn35KCxEAAHBLmcNQv3799NBDD6l169Z2/w8LC9Pjjz+u2267TQ8++KCysrI0e/Zst8PQkiVLdOrUKUnS/Pnz1bNnT2Pa448/rpYtWyouLk6nTp3S22+/rfHjx7tVDgAAMLcyd6B+/vnniwUhW23atNH9998vSfrll1+cXuJyJT8/Xx988IEkqWfPnnZByKpXr17G/z/44AN+Www+Jb/AosRDF7R1z0klHrqg/ILy/3YOAMA7vPLbZDfddJPx+OzZs2ratGmZXr97926lp6dLkgYOHOh0vgEDBmjbtm26ePGi9uzZo65du7pVX8CTvk84rcXrE5WakW38r37odRp9X5R6dCzbsQAA8D6v3FqfmppqPHanL8/+/fuNx9HR0U7ns51m+xqgsnyfcFozl++yC0KSlJqRrZnLd+n7hLK3lAIAvMsrYWjTpk2SpNDQUJeX1Jw5cuSIJMnf31/Nmzd3Ol/z5s3l5+dn9xqgsuQXWLR4faLLeZZ8so9LZgDgYzx+mWzt2rU6cOCAJOnhhx9WQEBAmZeRlpYmSapbt64CAwOdzhcUFKS6desqIyNDFy9edLlM651ojqSkpKhJkyZlridgK+lIarEWoaIupF9V0pFURbVtUEG1AgCUxKMtQ7/88otmzJghSWrWrJmeeuopt5Zz9epVSVLNmjVLnNc6T1ZWlltlAZ6Sluk6CJV1PgBAxfBYy1BaWprGjBmjrKwsBQYGas6cOapTp065lmm9BFbeeSTXAzK5ajUCSiu87nUenQ8AUDE80jJ0+fJlxcXF6fjx4/L399fs2bPVqVMnt5cXHBwsScrOLvkb9LVr1yRJtWrVcrs8wBNuaV1f9UNdB50GYcG6pXX9CqoRAKA0yh2Grl69qtGjR2v//v3y8/PTjBkz1L9//3Its169epKkzMxM5ebmOp0vJydHGRkZkgoHfQQqU4C/n0bfF+VynlH3dlCAf+laMwEAFaNcYSgnJ0djx47V7t27JUkvvviiHnjggXJXynoHWkFBgTEKtSOnTp2S9afV3LlrDfC0Hh2basoTXYu1EDUIC9aUJ7oyzhAA+CC3+wzl5ubqmWee0X/+8x9J0nPPPaehQ4d6pFIdOnQwHv/444+64YYbHM63d+9eh68BKlOPjk3VvUMTJR1JVVpmtsLrXqdbWtenRQgAfJRbLUP5+fmaOHGivv76a0nSH//4R40ePdpjlercubNx2etf//qX0/k2btwoqfCyWnn6KAGeFuDvp6i2DRTTqbmi2jYgCAGADytzGLJYLHrhhRf0xRdfSJKeeOIJTZgwwaOVCggI0COPPCJJ2rZtm77//vti8/znP//Rd999J0l65JFH3BrPCAAAoMxhaMaMGVq3bp0kafDgwXr22Wd15coVp395eXnFlnHy5ElFRkYqMjJSkydPdljOqFGj1KxZM1ksFo0dO1arV6/WmTNndObMGa1atUpPP/20pMLxjOLi4sr6NgAAACS50WfovffeMx5v2LBBGzZscDn/zJkzjV+xL4uQkBAtXrxYcXFxSklJ0bRp0zRt2jS7eZo2baolS5a49ftnAAAAkpd+td5T2rZtqw0bNmj58uXatGmTTpw4IUlq0aKF7r77bj3xxBPlHtgRAACYm5/Fem+6iVlHoHY1SjUAAPAtnvr89sqv1gMAAFQVhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqNdx50YkTJ5SQkGD8JSUlKTs7W5K0YsUKde/e3WMV/Pnnn7V69Wrt2rVLZ8+eVW5urkJDQ3XzzTerX79+io2NVWBgoMfKAwAA5uJWGOrbt6+n6+HQP//5T73xxhsqKCiw+/+FCxe0bds2bdu2Te+9956WLFmiRo0aVUidAABA9VKuy2Th4eGKiYlRTEyMp+pj2LRpk15//XUVFBSoWbNmevXVV7Vp0yYjAPXu3VuSdPDgQU2YMMHj5QMAAHNwq2Vo3rx5ioqKUvPmzSVJ8fHx2rp1q0crtmzZMklSrVq1tHz5crVo0cKYdv3116tLly4aPXq0vv32W+3evVsHDhzQzTff7NE6AACA6s+tlqH+/fsbQchbDhw4IEnq1KmTXRCy8vPz05AhQ4znR44c8Wp9AABA9eSzd5MFBQVJKgw9zgQEBBiPw8PDvV4nAABQ/fhsGGrfvr0kae/evTp79qzDeTZu3CipMAh16NChwuoGAACqD58NQ2PGjJG/v78uX76sESNG6KuvvlJqaqqysrKUlJSkiRMnavPmzQoMDNS0adMUEhJS2VUGAABVkFsdqCtCly5dtHDhQk2dOlWHDx/W2LFj7aYHBASoX79+iouLU8eOHUtcXp8+fZxOS0lJUZMmTcpdZwAAUPX4bMuQJPXu3Vvz58932IE6Pz9fZ86c0cmTJyuhZgAAoLrw2Zahq1evasqUKfr888/Vpk0bvf766+rcubNq1qypY8eO6b333tOGDRs0YcKEUo01tGXLFqfTXLUaAQCA6s1nw9CECRP09ddf68Ybb9SHH35o1yfo1ltv1a233qpGjRrp7bff1j//+U916dJFvXr1qsQaAwCAqsgnL5Pt27dPX3/9tSTpqaeecto5+umnn9Z1110nSfroo48qrH4AAKD68MkwtHv3buNxVFSU0/mCg4PVtm1bSdKhQ4e8Xi8AAFD9+GQYys7ONh67GnTRdnpJ8wEAADjik2GoYcOGxuPExESn8129etVoEWratKnX6wUAAKofnwxDt912m/z9C6u2ePFiXblyxeF8Cxcu1NWrVyWJztMAAMAtbt1Ndvz4caWlpdk9tzp06JBq1qxpPA8PD1fLli2LLSMyMlKS1K1bN61cudJuWpMmTfTQQw9pzZo1Onz4sB555BGNGTPG7tb61atXa/369ZKkZs2a6aGHHnLnrQAAAJNzKwwtXLhQ69atczht+vTpds9jY2M1a9asMpfx4osvKj09XV9++aWSk5M1fvx4h/O1atVK//jHPxQcHFzmMgAAAHx2nKGgoCC9+eab+u6777R+/XolJCTo3Llzys/PV926dRUZGam+ffsqNjZWtWrVquzqAgCAKsrPYrFYKrsSlc06ArWrUaoBAIBv8dTnt092oAYAAKgohCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqNdx50YkTJ5SQkGD8JSUlKTs7W5K0YsUKde/e3aOVzMvL06effqovvvhCBw8eVGpqqurUqaNGjRqpY8eO6tu3r+644w6PlgkAAMzBrTDUt29fT9fDqcOHD2v8+PFKTk62+39aWprS0tL0888/6+jRo4QhAADgFrfCkFV4eLiioqIkSVu3bvVIhWwdOXJEw4YN04ULFxQaGqq4uDjFxMSoUaNGunbtmpKTk7Vp0yZdvHjR42UDAABzcCsMzZs3T1FRUWrevLkkKT4+3uNhKD8/X5MmTdKFCxfUrFkzrVq1Sk2aNLGbp1GjRurVq5dHywUAAObiVhjq37+/p+tRzPr167Vv3z5J0quvvlosCAEAAHiCz95N9sEHH0iS2rdvr65du1ZybQAAQHXlk2EoLS1NCQkJkqSePXvaTcvNza2MKgEAgGqqXB2ovSUxMdF43LZtW6WmpmrhwoXavHmzzp07pxo1aujGG29Uv3799MQTT6hOnTqVWFsAAFCV+WQYOn36tPE4NTVVgwcPVmpqqvG/3NxcJScnKzk5WfHx8VqyZInatGnjcpl9+vRxOi0lJYU+SQAAmJRPXia7dOmS8fi1115TWlqaRowYoc2bNysxMVFfffWV4uLi5Ofnp1OnTmnMmDG6evVqJdYYAABUVT7ZMlRQUGA8zs3N1TPPPKOxY8ca/2vRooUmTZqkunXrau7cuTp27Jg+/PBDPfHEE06XuWXLFqfTXLUaAQCA6s0nW4Zq1aplPK5bt67i4uIczjdixAiFhYVJkjZv3lwRVQMAANWMT4ahevXqGY87duyomjVrOpwvKChIHTt2lCT98ssvFVI3AABQvfhkGGrbtq3xODQ01OW81ulXrlzxap0AAED15JNhqE2bNsalsvT0dJfzWn+XjNvrAQCAO3wyDAUFBSkmJkaS9NNPPzm9Uyw7O9sYnPGWW26psPoBAIDqwyfDkCQNGzZMknT58mX94x//cDjPokWLlJmZKUkaNGhQhdUNAABUH27dWn/8+HGlpaXZPbc6dOiQXYfn8PBwtWzZstgyIiMjJUndunXTypUri03v1KmT7r//fsXHx2vRokVKT0/XY489piZNmujMmTP64IMPtHr1aklSdHS0Bg8e7M5bAQAAJudWGFq4cKHWrVvncNr06dPtnsfGxmrWrFnuFKNp06bp8uXL2rRpk9asWaM1a9YUmyc6OlpvvfWWatTwySGTAACAj/PpBBEUFKT58+dr06ZNWrt2rfbv36/09HSFhITolltu0aBBgzRkyBCCEAAAcJufxWKxVHYlKpt1BGpXo1QDAADf4qnPb5/tQA0AAFARCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUarjzohMnTighIcH4S0pKUnZ2tiRpxYoV6t69u0craWv79u0aPny48XzmzJm6//77vVYeAACo3twKQ3379vV0PUrl6tWreumllyqlbAAAUD2V6zJZeHi4YmJiFBMT46n6uPTmm2/qxIkTatGiRYWUBwAAqj+3wtC8efO0ZcsWbd++XYsXL9Y999zj6XoVs2/fPi1fvlyhoaH685//7PXyAACAObh1max///6erodLeXl5euGFF5Sfn6/nnntO9evXr9DyAQBA9VUl7iZ75513dODAAXXq1EkPP/xwZVcHAABUIz4fho4ePaq33npLgYGBeuWVV+Tn51fZVQIAANWIT4chi8Wil156SdeuXdPIkSPVtm3byq4SAACoZnw6DK1Zs0a7du1Sy5YtNWbMmMquDgAAqIbc6kBdEc6ePas5c+ZIkqZNm6aaNWuWa3l9+vRxOi0lJUVNmjQp1/IBAEDV5LMtQ9OmTdOlS5c0ePBg9ejRo7KrAwAAqimfbBn6/PPPtWXLFoWGhmrKlCkeWeaWLVucTnPVagQAAKo3n2sZysnJ0d///ndJ0qRJkxhTCAAAeJXPtQxlZ2fr/PnzkqQXX3xRL774osv5p0yZYrQerV+/Xu3atfN6HQEAQPXhcy1DAAAAFcnnWoZq166t9evXu5xn3759RovRuHHjjD4/N954o7erBwAAqhmfC0MBAQElXurKzMw0Hjdt2pRLYwAAwG1uhaHjx48rLS3N7rnVoUOH7MYECg8PV8uWLYstIzIyUpLUrVs3rVy50p1qAAAAlJtbYWjhwoVat26dw2nTp0+3ex4bG6tZs2a5UwwAAIDX0YEaAACYmp/FYrFUdiUqm7UDtquBGQEAgG/x1Oc3LUMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUarjzohMnTighIcH4S0pKUnZ2tiRpxYoV6t69e7krlpaWpn//+9/asWOHfv75Z50+fVq5ubkKCwtTZGSk+vfvryFDhigoKKjcZQEAAPNyKwz17dvX0/Wwk5CQoEcffVR5eXnFpp0/f17nz5/Xtm3btHz5ci1cuFAtWrTwan0AAED15VYYsgoPD1dUVJQkaevWrR6pkCRdvXpVeXl5qlu3rgYOHKiYmBhFRESodu3aOnHihN5//32tXbtWycnJGjFihDZs2KDg4GCPlQ8AAMzDrTA0b948RUVFqXnz5pKk+Ph4j4ahkJAQTZw4UUOHDi0WcsLCwoyy33jjDZ04cUKrV6/WyJEjPVY+AAAwD7c6UPfv398IQt7Qvn17jRo1ymVrz6hRoxQWFibJs61SAADAXKrs3WSBgYG64YYbJElnz56t3MoAAIAqq8qGIUlKTU2VVHhZDQAAwB1VNgwlJSXpxIkTkqTo6OhKrg0AAKiqynU3WWWxWCyaOXOmJMnf31+///3vS3xNnz59nE5LSUlRkyZNPFY/AABQdVTJlqG33npLP/zwgyRp6NChuummmyq5RgAAoKqqci1DX3zxhRYsWCCp8K6zSZMmlep1W7ZscTrNVasRAACo3qpUy9D27ds1adIkWSwW3XDDDVq8eDE/xwEAAMqlyoShvXv3asyYMcrJyVHTpk21bNkyNWjQoLKrBQAAqrgqEYaSkpI0atQoZWVl6frrr9e7776rpk2bVna1AABANeDzYcj6+2OXLl1SWFiYli1bplatWlV2tQAAQDXh02Ho2LFjevLJJ5Wenq46deronXfe4c4xAADgUT4bhk6dOqXhw4fr/PnzqlWrlhYvXqwOHTpUdrUAAEA149at9cePH1daWprdc6tDhw6pZs2axvPw8HC1bNmy2DIiIyMlSd26ddPKlSvtpl24cEEjRoxQSkqKAgMDNXv2bEVGRurKlStO61S7dm133goAADA5t8LQwoULtW7dOofTpk+fbvc8NjZWs2bNKtPyv/32W/3666+SpNzcXI0dO7bE1xw8eLBMZQAAAEg+fJkMAACgIvhZLBZLZVeisllHoHY1SjUAAPAtnvr8pmUIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYGmEIAACYWg13XnTixAklJCQYf0lJScrOzpYkrVixQt27d/dYBXNycrRq1Sp99tln+vXXX5Wbm6smTZqod+/eGj58uBo2bOixsgAAgPm4FYb69u3r6Xo4dO7cOY0cOVLJycl2/z9y5IiOHDmitWvXasGCBeratWuF1AcAAFQ/5bpMFh4erpiYGMXExHiqPob8/HyNGTNGycnJqlGjhp555hl99dVX+u677zR79mzVr19f6enpGjt2rE6dOuXx8gEAgDm41TI0b948RUVFqXnz5pKk+Ph4bd261aMVi4+PV2JioiTpb3/7mx5++GFj2pAhQxQZGakHHnhAGRkZmjdvnmbPnu3R8gEAgDm4FYb69+/v6XoU895770mSbrzxRrsgZBUZGan7779fa9as0caNG/XCCy8oLCzM6/UqLUtBvrJP/Kz8yxcVEFJP17VoJz//gFK/Pr/AoqQjqUrLzFZ43et0S+v6CvD382KNfbfckurki3XOy8vTwR92KivtgmqFN1Bkt+6qUcOtw60YV/tWecot7z7r7rIra/v5Km9uB5ReZW2H6rb9q8r78czZ2cNOnTqlAwcOSJIGDhzodL4BAwZozZo1ysvL0zfffKP77ruvgmro2pUDO3Rh01LlX0o1/hdQp74a3P2kat98W4mv/z7htBavT1RqRrbxv/qh12n0fVHq0bGpV+rsq+VKclknX6xzzZQf5b/rA4X6XVHw/z8t8d+1VdD1EXXuN6Bc5bratw78muZ2ueXdZ91d9k85LStl+/kqb24HlF5lbYfqtv2r0vvxyVvr9+/fbzyOjo52Ot+tt94qf//Ct7Bv3z6v16s0rhzYobNrZ9ttfEnKv5Sqs2tn68qBHS5f/33Cac1cvsvuw0GSUjOyNXP5Ln2fcNrjdfblcl1NW7Zhn8/V+bPVHyts1zuqqyt20+rqisJ2vaPdX250u1xX+9aZtbPdLre8+2x56vzZ6o8rfPv5Km9uB5ReZW2H6rb9q9r78ckwdOTIEeNxy5Ytnc533XXXqUGDBpKko0ePer1eJbEU5OvCpqUu57mweaksBfkOp+UXWLR4faLL1y/5ZJ/yCyxu17GqlevK+q2HXU6v6Dr7qUD319pV+LjIVR7rc/9dHygvL6/M5Za4b1nsyyltueXdZ10pTZ3vr7VLfipwONkb289XeXM7oPQqaztUt+1fFd+PT4ahtLQ043H9+vVdzmsNQxcvXnQ5X58+fZz+paSklL/SUuF10SIpuKj8zFRln/jZ4bSkI6nFviUXdSH9qpKOuC6jrHy5XFdK+pys6Dq3qXFO9QKyigUSKz8/KdTvig7+sLPM5Za0b/n5FQ9CpSm3vPusK6Wpc72ALLWpcc7hdG9sP1/lze2A0qus7VDdtn9VfD8+GYauXr1qPK5Zs6bLea3Tr1y54nK+ipB/2XUgK2m+tMzSBYPSzldavl6uL5Xhanl1/a86nWYrK+1Cmcst7b5V1nLLu8964jWu1ltF7CO+wJvbAaVXWduhum3/qvh+fLIDtS0/Z193SzndasuWLU6n9enTp0x1ciYgpF655guve12pXl/a+UrL18v1pTJcLS+zINjpNFu1whuUudzS7ltlLbe8+6wnXuNqvVXEPuILvLkdUHqVtR2q2/aviu/HJ1uGgoP/d3K0/syHM9euXZMk1a5d26t1Ko3rWrRTQB3Xl/UC6tbXdS3aOZx2S+v6qh/q+uTfICxYt7R2XUZZ+XK5rpR093VF1/lwXkNdzK8li5PLdxaLlGGprchuZf+5mpL2LYtFbpVb3n3WldLU+WJ+LR3Oc/yTOt7Yfr7Km9sBpVdZ26G6bf+q+H58MgzVq/e/tGjbf8iRCxcKm/59YYwhP/8ANbj7SZfzNLjrSadjLAT4+xm3kzsz6t4OHh+DxZfLdeW+mDYup1d0nS3yV3xW4U/DFA0m1ucFXR9xa7yhEvctP/tySltuefdZV0pT5/isrrI4OQ15Y/v5Km9uB5ReZW2H6rb9q+L78ckw1Lp1a+Px8ePHnc6XnZ2t8+fPF3tNZap9821q9MCkYqk4oG59NXpgUoljK/To2FRTnuharPWhQViwpjzR1Wtjr/hqua6mjRjcwefqPPCxB5XedaQyZd9SmanaSu86slzjDLnatxo/MMntcsu7z5anzgMfe7DCt5+v8uZ2QOlV1naobtu/qr0fP4vFWeN66cXHx2vKlCmSPPOr9adOndKdd94pSRo3bpyefvpph/Pt3LlTw4YNkyS9+uqrbg+6aO0z5KpfUVkxArXnymUEanuMQF29VZURe6s7RqD2DG+/H099fvtkB+pmzZopMjJSBw8e1MaNG52GoY0bCweSCwgI8MqPxZaHn3+Aglt1cPv1Af5+impb9o625eWL5ZZUJ1+sc40aNdS+x+1eKdfVvlWecsu7z7q77Mrafr7Km9sBpVdZ26G6bf+q8n588jKZJP3hD3+QJB0+fFgfffRRsem//PKL4uPjJRX+ZIdtPyMAAIDScqtl6Pjx43Ydm2379Rw6dMhubKDw8HCHo0hHRkZKkrp166aVK1cWm279EdbExES9/PLLunDhggYPHqyaNWtqx44dmjVrlnJychQaGqrx48e78zYAAADcC0MLFy7UunXrHE6bPn263fPY2FjNmjWrzGUEBARo4cKFGjlypJKTkzVv3jzNmzfPbp6wsDAtWLBAzZo1K/PyAQAAJB/tM2TVsGFDrV27VqtWrdJnn32mY8eOKS8vT40bN1bv3r01YsQINWzoeIwSAACA0vDI3WRVnTfuJgMAAN7lqc9vn+1ADQAAUBEIQwAAwNQIQwAAwNQIQwAAwNR8+m6yinLu3Dnl5+cbHbEAAIDvS0lJUUBA+X/eg5YhSTVr1vTY70bZSklJUUpKiseXi6rBm9vf1bLLU25l1Rn2WFe+obK2Q3Xb/t58PzVq1LAb6Nld3FrvRdyyb27e3P6ull2eciurzrDHuvINlbUdqtv2rwrvh5YhAABgaoQhAABgaoQhAABgaoQhAABgaoQhAABgaoQhAABgatxaDwAATI2WIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqe/6n2Kmb79u1avXq1fvzxR128eFH16tVTdHS0Hn30Uf32t791e7lnzpzRli1btHPnTh08eFBnzpxRQUGBwsPD1b59ew0ePFj9+vWTv3/p8ujVq1f18ccfa/PmzTpy5IjS09MVFhamxo0bKzo6WgMGDFB0dLTb9TUrb21/Z8u+/vrrtX//fmOeevXq6fLlyw7L3bVrl3bu3Kl9+/bp2LFjunjxoi5fvqzAwEAFBgYqLy9Pubm5xmubNWumpUuXGstesWKFunfvLkn6+OOP9cILLziclpeXp08//VRffPGF9u7dq8zMzDK9z5kzZ+r++++3+9/OnTu1Zs0a7dmzR6mpqbJYLMrNzS1xWb/73e+0aNEih9M8fUyVlzf3HSt3j3tfW1fe5I3tsHPnTg0bNqxMr6lXr566detmV+7kyZO1bt26El9r3e/dKdf2WLZlsVi0ZcsWxcfHKyEhQenp6apTp45uuukmDR48WA888IDd9vf2/rxr1y6tWbNGP/74o86fP6+CggLVq1fP2B/79+8vPz+/Epdje746ePCgUlNTVadOHTVq1EgdO3ZU3759dccdd5S5fqa+tf7VV1+1+/Ao6sknn9Tzzz9f5uV+8cUXGj9+vEpatV27dtX8+fNVr149l/Pt3r1bkyZN0qlTp5zOExsbq1mzZpW5rmbmre1fmmW7Yi334Ycf1k8//eTWMqT/nSTPnz+vgQMHKiMjo9i0w4cPa/z48UpOTna7nPj4eLVv316SlJ+fr2nTpmnNmjVuLctZGPL0MVVe3tx3rNw97n1tXXmTt7aDO6HEUbneDkM1atTQ1q1b1aBBA7v/Z2VlaeLEiS5/Jb5Tp05avHix6tSp49X92WKxaPr06Vq9erXL+W677Ta99dZbCgkJcTpPac5X3bp108qVK8tcT9O2DK1YscLY+D179tS4cePUsmVL/frrr1qwYIG2bdumpUuXqkmTJmU+KLKysmSxWNSgQQMNGTJEvXr1UuvWrVWzZk0dPnxYS5cu1ZYtW7Rr1y796U9/0urVq51+Q9u9e7fi4uKUlZWlxo0ba9SoUerRo4fq16+vy5cv6+eff9bnn3+uWrVqlXudmIk3t7+zZY8fP147d+60m/evf/2r+vfv77Dchg0b6oEHHlCXLl10ww03aNu2bXrrrbckSTfccIMuXrxoBJy6des6bdF55ZVXlJGRoRYtWujEiRPG/48cOaJhw4bpwoULuu6665SdnS1J6tKlix5//HFdu3ZNc+bM0YULF+yWt3DhQk2ePFmZmZmKiIgwgpAkvfbaa0YQ6t69u55++mnddNNN+utf/6pNmzbJ399fBQUFatOmjVatWqWgoCC7Zdeo4fiU5Mljqry8ue9Ylee496V15U3e3A5dunTRnj17HE57//33NXv2bLv/3X777Ro3blyxcq06d+6sJUuWOC3Put+7KtcqNTVV99xzj/Lz89WrV69iQUiSpkyZYgShfv36KS4uTi1btlRaWpo2bNigxYsXa8+ePRo3bpx69+7t1f353XffNYJQZGSkxo0bp3bt2ikwMFDJyclauHCh9uzZox07dujll1/WnDlzHC7H9nwVGhqquLg4xcTEqFGjRrp27ZqSk5O1adMmXbx4scx1lCRZTCgtLc3SuXNnS0REhOWxxx6z5OXl2U3Py8uzPProo5aIiAhL586dLRcvXizT8r/99lvLmjVrLDk5OU7nmTp1qiUiIsISERFh+fzzzx3Oc+nSJcvvfvc7S0REhCU2NtaSkZFRpnrAMW9uf2fL3rx5syUiIsISGRlpbPeIiAjLV199VapyHS33+PHjlt/85jfGsjp06GC37B07dhjl9unTx7Jq1Spj2vfff2+5//77LREREZY77rjDEh0d7bTOd955p6Vv377Ga+fMmWM8fvvtt406Hjt2zNKuXTtLRESEZdiwYZbc3Fxj2vPPP2+JiIiwDBkyxHLzzTdbIiIiLIsWLSr1evXUMVVe3j53WCzlP+59ZV15U0Vsh5LKvfPOO4utw6LlTpgwwRIREWEZOnSoR8q3WCyWpUuXutx2O3bsMKb/5S9/cbiMdevWGfN07NjRq+vxjjvuMM4z6enpxaZfu3bNMmTIEEtERISlXbt2lrS0tGLz5OXlGeer3r17W06fPl3mepSk6n0d8IBPPvlEly5dkiRNmjRJAQEBdtMDAgI0adIkSdKlS5f06aeflmn5vXr10sMPP6zAwECn8zz33HPGt7GtW7c6nGfp0qU6ffq0AgMDNXfuXNWtW7dM9YBj3tz+jpZ96dIlTZs2TZKKXbr4/vvvS1Wuo+W2aNFCXbp0MeZ57rnn7JadlZVllPvyyy/ruuuuM6Zt27ZN+/btkyT17dtXV65ccVrnadOmacCAAcZrN27caNR3yJAhdv/Pz8836uKoladu3bqKiYmRJK1cubLESzlWnjqmysvb5w6p/Me9r6wrb6qI7VBSudYyw8LCdOeddzos17Yl1lPWr19frFxbGzZskCT5+/sXOydY3XfffYqIiJAko0XYG+sxLS1NZ86ckSTFxMQoNDS02DxBQUHq37+/pMLL7MePHy82z/r1643z1auvvmrX6uYppgxD1ubDZs2a6dZbb3U4T3R0tJo2bSpJ+uqrrzxeh/DwcNWvX1+SdO7cuWLT8/Pz9dFHH0mSevfurRtuuMHjdTArb25/R8uePXu2zp07Z2xv2z4au3fvLlW5zup89OhRSYUnlOHDhyssLMyYtmbNGp07d06DBg1Sz5497cr597//LUlq3769cf3dUZ2tr23VqpXx2pMnT0oqbFK//vrrjf///PPPkqRatWopKirK6Trq1q2bpML9/scff3Q6X1mVdEx5grfPHRV13FfEuvKmyjqHW8tt2LChfv31V0nSgAED7C732pZ7+vRpj5RrdeDAAR04cMBhuVbW47B169Zq2LCh02VZj0NJaty4sVfWo239XHWOtr1MGx4eXmz6Bx98IKnwfNW1a9cy1aG0TBmGkpKSJKnEu6+s023v/vGU3Nxco79H7dq1i01PSkoyTlJFP8hKc1cOnPPm9i+67B9++EEffvihQkNDjW9gLVu2NOY/duxYqcp1VOevvvrKCCadO3cutuxvvvlGoaGhmjp1arEyjhw5Iqlw37Jddm5url2dHb3W6r777rN7bv3GXKdOHZcnPtvAlpiY6HS+sirpmPIEb587Kuq4r4h15U2VdQ63lmu7zmJjY52Wm56ebvf/goIC5eXluV2+bWdsR+VK/zsOS2pRtD0Omzdv7nJed9djSEiIEei/++47owXaVl5enjZt2iRJatu2bbG6pKWlKSEhQZJ3jwnThaGzZ8/q8uXLkqQWLVq4nNc6/fLlyx7/9vTNN98oJydHkuMD2vZDom3btjpx4oSmTJmi3/72t+rQoYOioqL04IMP6t1339W1a9c8WrfqzJvbv+iyr127ppdeekkWi0WjR482TgS233yuXr1abNlFy7VdbrNmzXTq1Cl9+OGHevbZZyUVdr78y1/+UmzZFotFEydONFoAHLn++uuNZX/99dfq0KGD/vCHP8hisahTp04Ov3lKhSe5vn37FvufVHgydnb5Kzk5Wa+++qrxfPbs2YqLi9Mnn3xSrg8JqeRjqrwq4txRUce9t9eVN1XWOdy2XOulnzZt2qhjx45Oy7Xu08nJybrrrrvUvn17tW/fXt27dy/zfp+Xl6d//etfLsuV/nccljRERkpKivHY2Y0LRd+PO+tx3LhxkqRTp05p5MiR2r59u9LT03X58mXt2bNHf/zjH5WYmKiQkBC98sorxb5IFT0mUlNT9corr+iOO+5QVFSUOnTooMGDB2vBggVGEHSH6cKQbU9zR73wbdl+iLjdQ92BnJwco8d8rVq1dO+99xabx7Z5NTk5WUOGDFF8fLzS0tKMZSQmJmrmzJn6/e9/r/Pnz3usftWZN7d/0WUvWLBAx44dU+fOnXX77bcb04reOlp02UXLtZ2+aNEi3XnnnXrppZeUl5en4OBgrVq1SrfcckuxZbdq1UoPPfSQyzrb3rZd9Fvb119/rXvvvVeHDx8u9rqePXsWC0pt27aVVNhXyVmLT3p6ut235ZycHH333Xf6y1/+okceecT4kCmr0hxT5VUR546KOO4rYl15U2Wdw21ff/XqVUnFW0cdlSsV7vfHjx9XQUGB8bys+/22bduMOzudlSv97zg8cuSIy/3jv//9b4llWpVnPQ4aNEgzZsxQ7dq1tXfvXg0fPlzdu3dX586d9eijj2rXrl2KjY3VRx99pE6dOhV7ve0xkZqaqsGDB+u9997T2bNnjfHLkpOTNX/+fKfnq9IwXRjKysoyHtesWdPlvLYdTm1fV15/+9vfjMsjzz77rMNrpLap/u9//7tyc3M1YcIEffPNN0pMTNTGjRuNge5+/vlnPfPMM6XujGpm3tz+tvOkpaVp6dKlCgwM1PTp042Tp6RiHVuLLrtoua7KHj16tG6++WaHyyrNIGYrVqwwHg8dOlQ1atRQjRo19MADD8jPz0+nTp3SmDFjjFYEK9twZ3X33Xcbj19//XWjM7VUeDIdOXKkpk6dalenW265xRjQLTExUSNHjnTrWCvNMVVeFXHuqIjjviLWlTdV1jm86Ov9/f2dBknbcgcNGqR3331XW7ZsUWJionbu3KnFixeXeb+3XiJzVa70v+OwoKBAc+fOdTjPp59+avR5klRi61R51+ODDz6o2bNnO9zXrl27pjNnzjgNhLatPa+99prS0tI0YsQIbd68WYmJifrqq68UFxdnd76yPd+WlunCUFmUZjTMslq2bJni4+MlFXaQfOKJJxzOZ3uCy83N1YwZM/THP/5RTZo0UVBQkNq0aWN8O5SkPXv2uBxgC2VXnu2/bt065eXlaeTIkcY3NU+UO3XqVGN5tWrV0htvvKFHH31UKSkpys/PtxujxLZzszO2geXf//638vLyFBcXp//7v//ThAkTJBX2ayo6PtJNN91UbFnt2rXToEGDJBXeJTdy5Ejt2rVL6enpevTRR9WwYUO98cYbdh9g9evX17JlyzR06FBJ0qFDh/Tuu++WWG9bpT2mKpK7+463j3tfXFfe5I1zuFWPHj3UqFGjEssdOnSofvvb36p58+YKCgpSWFiYYmJiyrTfZ2ZmGjc9uCpXkvr06WP0IYyPj9eECROUkJCgjIwMHT16VPPnz9fUqVNL3bm5NNNdSUtL07BhwzRmzBi1atVKixYt0n/+8x9t375dy5cvV8+ePbV9+3bFxcXp/fffL/Z6a2uaVHhMjBs3TpMnT1bLli0VFBSkFi1aaNKkSXbnqw8//LDM9TRdGLIdpKyka+7WDq9FX+eu9evXG/0lbr31Vs2dO9fpTmZbXuvWrZ02iz7zzDNGT/zNmzeXu47VnTe3v+08p0+fVqtWrTRmzJhi04p2+iu67KLl2k7fuXOnDh06pFatWmnDhg1q1qyZkpKSNGbMGC1btszuEpTttzlnbDuCFq3ziBEjjE6WRe96c7Y+XnnlFfXq1UtS4fD+Q4cOVffu3dWnTx/NnDlTeXl5mjFjhjF/aGio/Pz89Pzzzxsn+LLcvluWY6q8KuLc4c3jviLXlTdV1jm86OuddWAubbll2e83btxotM66Kte63DfffFMdOnQwXvvQQw+pW7duuueee7RgwQIFBwdr9OjRxmuc9Q0sy/txxPrl6ocfflDXrl21cuVK/e53v1ODBg0UHh6u2267TUuWLNGAAQOUn5+vV155Rb/88ovdMmzLq1u3ruLi4hyWZXu+cuez0HRhyPa25tTUVJfz2o68a9vz3h2bN2/W1KlTZbFY1K5dOy1ZssTlTmVbT1e3EjZo0EA33nijJBXbiVCcN7d/0Z81ePnll41WENtpRfvmFF120XJtX2sdE+bll19W8+bNjeCSlJSkN954w245roa1t7L2NXJU56CgIKOTZtFRqJ2tj1q1amnx4sWaO3euevbsqXr16ikwMFCNGjVSbGys1q1bZzc2UuPGjY2yrL8ndPTo0VI1c5f1mCqvijh3eOu4r+h15U2VdQ63LTcwMLDYDQTulFva/d46tpCjGxccadCggd5//31NmzZN3bp1U2hoqAIDA9WsWTM9/vjj+te//qXIyEhj/qLjC7n7forasmWLcQfaM88843DsKz8/P/35z3+WVNhSbW25tLJd7x07dnR6adT2fOXOZ6Hpfo6jUaNGql27tq5cueJwcCdb1tuWQ0JCXDZLluTbb7/VhAkTlJ+frzZt2mjp0qUl3vZoe2nF0UBVtqzTHd22CHve3P6NGjVScHCwcUIbMWKEw/mszd1W1pPhrl27VLduXYflWutsvbbvaNlF+/VY7zZzZdeuXXY/xeGszraX0xzV2Za/v78GDhyogQMHOlzWt99+azy2vSPGtpNmZmamgoODndbbnWOqvCri3OGN474y1pU3VcY5XJJdUGnSpInLlteylFvSfn/s2DHt3btXUmE/wNK0+EqF4eCRRx7RI4884nC6bZAsqd+Zu+vRtkXZ1dhjLVq0UL169XTx4kUdOnTIblpFfRaarmVIkvFbSiUN+GbdAW1/e6msduzYoXHjxik3N1ctWrTQsmXLStVhMSoqymjCLjpWRVHW3v116tRxu55m4s3t36ZNG7fr5arc8uyDJbG2MFQUaxiqWbOm3a9t29754uqk5+4x5QnePnd4+rivzHXlTRV5Dreyts5IKrHlsizllrTf25Zb0iWysrD9UmIdvNUZd9ej7eW10vZLKjpfmzZtjFZMb34WmjIM9enTR1Jh2nX2q+A//fSTcduxdf6y2rt3r/70pz8pOztbjRs31rvvvlvqVN2oUSMjSf/www9Ok/vZs2eNuwKKXvKAY97c/vfcc4/x+P/9v/+n9evXG39PPvlksfkHDBhgTK9du7bTcm0f2y7X9vq5tfOy1dixYzV37lzNnTtXa9euNcb7kGT0JwgODrZrdrdd9po1axwOyFe0zmWRlpZm9I0YMGCA0eR+7do14+TcunVrp99+y3NMeYK3zx2ePO4re115U0Wdw60sFotdn57z5897pNyS9nvbclu1amV0jC6vw4cP67vvvjOee2s92o6Abf05DUdOnTplDB9hHe3aKigoyPgJn59++slpEM3OzjYGZ3Tns9CUYejee+81+lPMmTOn2CWA/Px841eJ69SpY/f7S6WVlJSkUaNGKSsrSw0aNNC7775b4iifRVnv9HDVO/61114zetsX/TCEY97c/g8++KCx7I8//lgRERFq166d2rVrp9GjRxfrxzNw4EBjuiSj3Nq1a+uuu+5yWGfrckNCQuz6EhQd+r979+7G5aoOHTrYnWSs3zCvXr2qzMxMh3XeunWrw+Zm2zqX1NdAKvzgyM/PV05OjiZNmqSMjAyFhIRo/PjxkgrvFpkxY4bxDdnZ+vbEMVVeFXHu8MRx7wvrypsqYjvY2rlzpxEIrJ2NSyo3JCTE5Tm5NPu9bbmeGg8qMzNTEydOVG5urho3bmx8ofHGeuzRo4fx+M0333R6C7/tEADWGzBsDRs2TFLhoI//+Mc/HC5j0aJFxtAU7nwWmjIM1atXz+hP8cMPP2j06NH66aeflJaWpp9++kmjR4/Wrl27JBV2+iraMfbkyZOKjIxUZGSkJk+eXGz5hw8f1siRI3Xp0iWFhIRowYIFatiwoa5cueLwz1nSHThwoDEWxbRp0/T666/ryJEjysjIUGJiop599ll98sknkgpbJGx/awbOeXP7u1r28ePHi/1W0Llz5xyWe+XKFfXr108zZszQ119/rcuXLxvX/q13ZgwZMsTo2NikSRO72+qLOnnypKZMmWI8v+mmm4zxapYvX27cKv/DDz/o8ccf17hx47Rw4UKHyyraBG27PmJjYzVu3Dh98cUXOnHihDIzM7Vq1Sr17NlTd9xxh7Zt2yZ/f3+9+OKLslgs+vLLL/X4448bH/oREREaPnx4sTI9dUyVl7fPHVL5j3tfWVfeVBHbwZZ1ffv5+Rl3YZVU7m233aaHH35Y8+bN0/bt25WSkqKDBw8a5d5+++0l7ve25boaaLGo6dOn6/nnn9c333yjlJQUZWZm6ujRo1q1apUGDRqkpKQk1apVS3PnzjW+lHhjPXbq1MkYk2znzp36wx/+oK1btyo1NVUXL17Uzp079dRTTxkja//mN79x+OOznTp1Ms5XixYt0l//+lcdOHBAGRkZOnjwoKZNm2acr6KjozV48OBSrysrP4uJR+qbNWuWli1b5nT6k08+qeeff77Y/0+ePGk0F8bGxmrWrFl20+fPn68FCxaUuh7NmjUr1qnW6tKlS3rqqaeK3dps684779Rrr71WZe8OqSze2v6lWba39OrVy2j+XrFihdEnx7bO1mnR0dF67rnnjN8FKi3b5RZd9s0332z8kGRZdevWTa+99prDH5f05DHlCd7cd6TyHfe+tq68ydvbQSocZPD2229XVlaWunfvrhUrVpSq3EaNGmnmzJklvgdn+72jcktr8uTJdr9jVlTTpk01e/Zs485Ob67HjIwMjR071ghVzrRv316LFi1yOj5aTk5Oieer6OhovfXWWy5/gsgZ091NZmvy5MmKiYnRqlWr9OOPPyo9PV1hYWGKjo7WY489Znw7q0x16tTRe++9p/j4eH366af65ZdfdOnSJYWGhhq/U9SnT58qOV5IZfPm9ne17BYtWuidd96RVHib6pUrV4xpd911lyZNmiSp8CR50003KSEhQefPn1dqaqoxRlHNmjVVo0YN5eTk2NU5JSXFri+AK0FBQZo/f742bdqktWvXav/+/UpLSzPGr8nPzzcuxXTq1Mlly5NV06ZN1aNHD/33v//V6dOnlZGRoeDgYIWEhKh27drKy8tTRkaGMjMzFRQUpIYNGyoqKkqDBg1STExMldmPvX3u4LgvnYo4h2/atMkYddl6ebk05Vovb+3du1eHDh1SWlqaMjIyjEtRzZs310svveR0v3dUbmk9/PDDql27tnbv3q2zZ88a+07r1q1111136aGHHrK7a82b6zE0NFQrVqzQl19+qc8++0z79+/XhQsXZLFYFBYWpvbt26t///4aOHCgw1vvrRydr9LT0xUSEqJbbrlFgwYN0pAhQ0r8nTVnTN0yBAAAYMo+QwAAAFaEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGr/H9eYtg5v496bAAAAAElFTkSuQmCC"
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dotplot(input_x=nitrojen_yok)\n",
|
||||
"dotplot(input_x=nitrojen_var)\n",
|
||||
"\n",
|
||||
"# Grafikten görüldüğü üzere, nitrojen_var veri setinin değişkenliği nitrojen_yok'tan çok daha fazla."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# Değişkenlik Ölçüleri (Measures Of Variation)\n",
|
||||
"\n",
|
||||
"Örneklem değişkenliği veri analizinde önemli bir rol oynar.\n",
|
||||
"\n",
|
||||
"Küçük veri analizi problemlerinde bile, belirli bir istatistiksel yöntemin başarısı, örneklemdeki gözlemler arasındaki değişkenliğin büyüklüğüne bağlı olabilir. Bir örneklemdeki konum ölçüleri, bir veri kümesinin uygun bir özetini sağlamayabilir. Örneğin, bir önceki örnekte, örneklem değişkenliğini hesaba katmadan azot kullanımının büyümeyi arttırdığı sonucuna varamayız.\n",
|
||||
"\n",
|
||||
"Pek çok konum ölçüsü olduğu gibi birçok değişkenlik (veya yayılım, saçılım, dağılım) ölçüsü de vardır.\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "25"
|
||||
},
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Açıklık (Range)\n",
|
||||
"tmpData = np.array(veriSeti)\n",
|
||||
"tmpData.max() - tmpData.min()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "8.0"
|
||||
},
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# IQR : Interquartile Range\n",
|
||||
"# IQR, verilerin orta %50’sindeki yayılımı ölçer\n",
|
||||
"qs = statistics.quantiles(veriSeti)\n",
|
||||
"qs[2] - qs[0]"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "20.3"
|
||||
},
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Varyans\n",
|
||||
"# s2 ile gösterilen örneklem varyansı, her gözlem ile örneklem ortalaması (x̄) arasındaki\n",
|
||||
"# farkların karelerinin toplamının örneklem büyüklüğünün bir eksiğine bölünmesiyle elde\n",
|
||||
"# n-1 --> degree of freedom\n",
|
||||
"\n",
|
||||
"statistics.variance([3,0,-2,-1,5,10])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "4.51"
|
||||
},
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Standart sapma\n",
|
||||
"# s = sqrt(s2)\n",
|
||||
"\n",
|
||||
"round(statistics.stdev([3,0,-2,-1,5,10]), 2)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
308
YZM526/vize.ipynb
Normal file
308
YZM526/vize.ipynb
Normal file
@@ -0,0 +1,308 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# SORU 3"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Helper functions\n",
|
||||
"def pprint(title, val):\n",
|
||||
" space = (40 - len(title)) * \" \"\n",
|
||||
"\n",
|
||||
" if type(val) == int or type(val) == float:\n",
|
||||
" vs = \"{:.0f}\".format(val)\n",
|
||||
" indent = (5 - len(vs)) * \" \"\n",
|
||||
" else:\n",
|
||||
" indent = \" \"\n",
|
||||
"\n",
|
||||
" if type(val) == list:\n",
|
||||
" tmpVal = val[0]\n",
|
||||
" val = \",\".join([str(elem) for elem in val])\n",
|
||||
" if type(tmpVal) == int or type(tmpVal) == float:\n",
|
||||
" vs = \"{:.0f}\".format(tmpVal)\n",
|
||||
" indent = (5 - len(vs)) * \" \"\n",
|
||||
" else:\n",
|
||||
" indent = (5 - len(val)) * \" \"\n",
|
||||
"\n",
|
||||
" print(title, space, \":\", indent, val)\n",
|
||||
"\n",
|
||||
"def tprint(t):\n",
|
||||
" dash = len(t) * \"-\"\n",
|
||||
" print(t)\n",
|
||||
" print(dash)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Verilerin Toplamı : 1350\n",
|
||||
"Ortalama : 45\n",
|
||||
"\n",
|
||||
"Ortalama Farkları\n",
|
||||
"------------------\n",
|
||||
"[-35, -31, -31, -28, -24, -24, -21, -18, -17, -15, -12, -10, -7, -4, -4, -3, 0, 6, 8, 9, 9, 10, 17, 26, 29, 31, 32, 32, 32, 43]\n",
|
||||
"Ortalamadan Farkların Toplamı : 0\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Ortalama Fark Kareleri\n",
|
||||
"-----------------------\n",
|
||||
"[1225, 961, 961, 784, 576, 576, 441, 324, 289, 225, 144, 100, 49, 16, 16, 9, 0, 36, 64, 81, 81, 100, 289, 676, 841, 961, 1024, 1024, 1024, 1849]\n",
|
||||
"Ortalama Farkların Karesi Toplamı : 14746\n",
|
||||
"\n",
|
||||
"Varyans : 508.48\n",
|
||||
"Std. Sapma : 22.55\n",
|
||||
"Medyan : 41.5\n",
|
||||
"Mod : 77\n",
|
||||
"Çeyreklikler : 26.25,41.5,64.25\n",
|
||||
"Aralık : 78\n",
|
||||
"Çeyreklikler Aralığı : 38.0\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-A, C, E\n",
|
||||
"import statistics\n",
|
||||
"\n",
|
||||
"veri = [10, 14, 14, 17, 21, 21, 24, 27, 28, 30, 33, 35, 38, 41, 41, 42, 45, 51, 53, 54, 54, 55, 62, 71, 74, 76, 77, 77, 77, 88]\n",
|
||||
"pprint(\"Verilerin Toplamı\", sum(veri))\n",
|
||||
"\n",
|
||||
"mean = statistics.mean(veri)\n",
|
||||
"pprint(\"Ortalama\", statistics.mean(veri))\n",
|
||||
"\n",
|
||||
"ortFark = [(x - mean) for x in veri]\n",
|
||||
"tprint(\"\\nOrtalama Farkları\")\n",
|
||||
"print(ortFark)\n",
|
||||
"pprint(\"Ortalamadan Farkların Toplamı\", sum(ortFark))\n",
|
||||
"print()\n",
|
||||
"\n",
|
||||
"ortFarkKare = [(x - mean)**2 for x in veri]\n",
|
||||
"tprint(\"\\nOrtalama Fark Kareleri\")\n",
|
||||
"print(ortFarkKare)\n",
|
||||
"pprint(\"Ortalama Farkların Karesi Toplamı\", sum(ortFarkKare))\n",
|
||||
"\n",
|
||||
"print()\n",
|
||||
"\n",
|
||||
"pprint(\"Varyans\", round(statistics.variance(veri), 2))\n",
|
||||
"pprint(\"Std. Sapma\", round(statistics.stdev(veri), 2))\n",
|
||||
"pprint(\"Medyan\", statistics.median(veri))\n",
|
||||
"pprint(\"Mod\", statistics.multimode(veri))\n",
|
||||
"\n",
|
||||
"qs = statistics.quantiles(veri)\n",
|
||||
"pprint(\"Çeyreklikler\", qs)\n",
|
||||
"\n",
|
||||
"pprint(\"Aralık\", veri[-1] - veri[0])\n",
|
||||
"pprint(\"Çeyreklikler Aralığı\", qs[2]-qs[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "(<Figure size 750x275 with 1 Axes>, <Axes: >)"
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "<Figure size 750x275 with 1 Axes>",
|
||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAEUCAYAAABzvm09AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3dZ1RU1xoG4JcZhiIISu8g1giiYkVjN2LDXqLGbjQJFuwae+9RE3sJWIMFsCb23hXF3mIB6aLS25Rzf6hzM6HIEAYE32etWevOPrt8Z5KrX/Y5e28tQRAEEBERERGpQVTUARARERFR8cMkkoiIiIjUxiSSiIiIiNTGJJKIiIiI1MYkkoiIiIjUpl3UAeSHXC6HQqEosvFFIhHEYnGRjU9ERERU1IpdEimXyxEdHg5FprTIYhDpSGBlZ8dEkoiIiL5YxS6JVCgUUGRKYSyRQFu78MOXyWRIyJRCoVAwiSQiIqIvVrFLIj/S1taGRCIpmsGlRTcLSkRERPQ54MIaIiIiIlJbiUgik1NSMGvxYrTv9S0sq1SGjpUltvr751j/4ZMnaN/rW5R1LgfLKpUxYLg3XsfFFWLERERERMVbsX2c/U9xb95g3i/L4GBrB7eqVXH20qUc64ZHRqJFp04wNiqNOT//jOSUFCxfuxb3Hj7Epb+OQEdHpxAjJyIiIiqeSkQSaW1pibA7d2FlYYHgkBB4tPbMse6ilSuRkpaKK8eOwcHODgBQp2ZNtOnRA1t3+WNI336FFTYRERFRsVUiHmfr6urCysIiT3WDDh9C25bfKBNIAGjRuAkqli+PvQcOaCpEIiIiohKlRCSReRURFYXYuDjUql49y7U6NWsi5N69IoiKiIiIqPj5opLI6JgYAICVpWWWa1YWlnj77h0yMjIKOywiIiKiYueLSiLT0tMBALrZLJ7R09VVqUNEREREOfuikkh9PT0AQEZmZpZr6R9mID/WISIiIqKcfVFJ5MfH2B8fa/9TdGwMTMqWhe6HGUkiIiIiytkXlUTaWlvD3NQUwbdvZ7l2/dYtVHdxKYKoiIiIiIqfLyqJBIDO7drjzxPH8SoiQll26vw5PH32DF29OhRhZERERETFR4nYbBwA1mzejPjEBERFv39Ufej4MYRHRQIAvAcPgbGREQBg4qhRCDh0EK26dsHwId8jOTUFv6xZA9evvkL/b78tsviJiIiIihMtQRCEog5CHVKpFNEvQ2Gqrw+JRKIsr1i7NkLDX2Xb5sm163BycFB+v//oESbMnIGLV69CR0cHbVq2xOKZM2Fp/ukNy6VSKd6kpcHKyVFlfCIiIqIvSYlJIgtzfCaRRERE9KX74t6JJCIiIqL/jkkkEREREamNSSQRERERqY1JJBERERGprdhu8SOTydRuI2RmIGrWbACA9Yzp0NJR/3Sa/IxLREREVNIUuyRSJBJBpCNBQqYUkErVaitkZuDdh3OzddLSoCVX5C8GHQlEIk7iEhER0Zer2CWRYrEYVnZ2UCjUTwAVGRmQGRoCACwdHSHK5znZIpEIYrE4X22JiIiISoJil0QC7xPJ/CRxCoUCkg/tJBIJRNznkYiIiChf+EyWiIiIiNTGJJKIiIiI1MYkkoiIiIjUxiSSiIiIiNRWLBfWfI7kcnm+VowXNa40JyIiovxgElkA5HI5XkVGQSorfkmkRFsEextrJpJERESkFi1BEISiDuK/UmRkIGKUDwDAduWKfO//mN8xLZYuQdjrt5CUKg1t7eKTl8tkMkhTk+BkZw0JtzsiIiIiNRSfjKcY0NbWLnbJmHpn/hARERG9x4U1RERERKQ2JpG5SE5OxowZM9C6dWuYmJhAS0sLfn5+eWqbkZGBOdOnoHrlcnCyLIs2zRvh7KmTOdZPiI+HS3kHWBnr4+C+wFz7XrFkEayM9dGkfi2V8rDQUFgZ6+f4GTvipzzFTkRERPQpfJydi7i4OMyePRsODg6oXr06zpw5k+e2o378Hof2B+H7H4fDuXwF7Nq5DX26d0LAoSOo59EwS/3F82cjLS31k/1GRoRj5S+LUcrAIMs1UzMzrNrwe5by0yeOIWC3P5o0b5Hn+ImIiIhyUygzkQsXLoSWlhZ8fHwKY7gCY21tjaioKISGhmLJkiV5bncz+Dr2BezBzzNmY8bcBeg7cDD2HjwCO3sHzJk+JUv9hw/uY8vmjRjuM/aTfc+aOhm1atdF9ZruWa4ZGBigW89eWT6xMTEobWSEVm3a5fkeiIiIiHKj8STy+vXrWL9+Pdzc3DQ9VIHT1dWFlZWV2u0O7QuCWCxG3wGDlWV6enro3XcAbly7iojwVyr1p00chzbtO2Q7Q/lPly9ewKH9QZizMO8JbUx0FC6eP4u2Xh2hp6en3o0QERER5UCjSWRycjL69OmDjRs3omzZspoc6rNy785tOFeoiNJGRirlNWvVBgDcv3tHWXYgKAA3rl3BtNnzc+1TLpdjyoQx6NNvIL5ycc1zLPsC9kChUKBr92/VuAMiIiKi3Gk0ifT29ka7du3QsmVLTQ7z2YmJiYalZdYZTIsPs5rRUVEAgLS0NMyaNhlDfxoBB0fHXPvc8vtGhL8Kw4Sp09WKJWD3LlhaWeHrJk3VakdERESUG40trPH398fNmzdx/fp1TQ3x2UpPS4NONhue6+m+f5ycnp4GAPht+VLIpFKMGjsh1/7evn2DJfPmYPT4STAzM89zHM/+foo7ITcxzHsERCIuxCciIqKCo5Ek8tWrVxg1ahSOHz/+Rb6Hp6evj8yMjCzl6Rnp76/r6SMsNBRrf12O+UtXwMDQMNf+Fs6ZhTJly2LwMPW26AnY7Q8A6MJH2URERFTANJJEBgcHIzY2Fu7u/19BLJfLce7cOaxatQoZGRkl+qxmS0srREVFZimPjY4GAFhZW2Px/NmwsrZBg68bIyw0FADwOub99TdxcQgLDYWdvT1evniO7X6bMXvhEuVjcADISE+HTCpFWGgoSpcujbImJlnGC9qzCxUqVsp2JTcRERHRf6GRJLJFixa4e/euStnAgQNRpUoVTJw4sUQnkADgUs0NF8+fRVJiosrimps3riuvr121Ei+eP0O96l9laT9p7CgAwOPQKERFRkKhUGDqhLGYOiHrFkB13arg+x+9MWfhUpXymzeu4cXzZ5gwRb13KImIiIjyQiNJZOnSpeHqqrqC2MDAAKamplnKSyKvTp2x9rcV2Oa3GT+NHA3g/Qk2/ju2wr12Hdja2WPS1Bl4++aNSrtHDx9g0dxZ8B41BrXr1kMpAwNUqVoVvjt2ZRlj4dxZSE5OwtyFS+FUzjnL9cA979t06dZTA3dIREREXzqeWPMJq1atQnx8PCIj3z+ePnjwIMLDwyHIZOiSkQGjbBbQuNeuC69OXTB/1nTEvX6Ncs7lsfuP7XgVFopfVq0DgGz3hDQyLgMAqOFeC23adwAAmJqaKf/3P21YuwoAsr0ml8uxPzAAterUhZNz1gSTiIiI6L8qtCRSnSMDPydLly5F6Id3FgEgMDAQgYHvz7Zu0bt3tkkkAPy2fjMWzZ2Fvbv+QEL8O3zl4optuwLh0fBrjcd87vQpvI6Nwahxua/6JiIiIsovLUEQhKIO4r9SZGQgYpQPAMB25QqIckjsNDWmxdIlCHv9FvpGZSGRSDQ+dkGRSqVIS3wHJzvrYhU3ERERFT1uHkhEREREamMSSURERERq48KaAiKXyyGVSos6DLVIpVLlJy9EIlGJ356JiIiI8oZJZAGQy+WIjn0NvEuBWLv4TO7KZQpI05IBLUCi/el3IiXaItjbWDORJCIiIiaRBUpLC8XpDQGxtgh6ZU1gYGz6ycRQJpNBmpoEhULBJJKIiIiYRBYEsVgMK0tz6BoYF7tVzuo8oi5eD+uJiIhIk4rPtFkhu379OoYPHw4XFxcYGBjAwcEBPXr0wJMnT7KtLxaJIZFIlJ/MjAwsX7IQ/Xp2RbUKjrA3M0LAbn+VOhKJBHfvhGDqxHFo16IJylmZwN7MKEud7D43b1yDvZkR7M2MkJiYoHLNw91Vee3fn8Z1a6rUTUlOxuxpP8OjpiucLMuilmsljPb+AeGvwgr5FyciIqLihDOROVi0aBEuXryI7t27w83NDdHR0Vi1ahXc3d1x5coVVK1YMdf2b968wS+L5sPW3h5Vq1XDpfPnsq138thR7Nzqi69cqsHRqRye/f30k7EpFApMGT8WpQwMkJqSkuX6nAVLkPKv8vCwMCycOxNNmrdU6adHp3Z48vgRBgweivIVKuLF82fw27wBZ04dx/lrITAsXfqT8RAREdGXR2NJZFJSEqZNm4agoCDExsaiZs2aWLlyJerUqaOpIQvUmDFjsHPnTujo6CjLevbsiWrVqmHhwoXYunlzru0traxw58kLWFhaIeRmMFo3y/6kmgGDv8dwn7HQ19fH5HE+eUoit/luRmREOPr0G4CNa1dnuZ7dUYjLlywEAHTt8f+ztIOvX0XIzWDMX7ocg77/QVlevmIljPYehnNnTqGtV8dPxkNERERfHo09zh4yZAiOHz+Obdu24e7du2jVqhVatmyJiIgITQ1ZoBo0aKCSQAJAxYoV4eLigocPH36yva6uLiwsrT5Zz9zCEvr6+nmO693bt1g0dxbG/zxNedZ2XgTu2QUHRyfUqeehLEtKSnofg7mFSl1Lq/dx66kRFxEREX1ZNJJEpqWlISAgAIsXL0bjxo1RoUIFzJw5ExUqVMDatWs1MWShEAQBMTExMDMzK7IYFs2bDXNLS/QbNCTPbe7eDsHTx4/QpXtPlfLqNd1RysAAi+fNxoWzZxAVGYFLF85jzvQpqOFeC42bNi/o8ImIiKiE0EgSKZPJIJfLoaenp1Kur6+PCxcuaGLIQrFjxw5ERESgZ8+en66sAQ/u3cU2302YNW+RWtvsBOz2BwB06fGtSrmpqRnW+25DYmICunVog5pfVUCXdq1gZWWNgINHoK3NV2aJiIgoexpJIkuXLg0PDw/MmTMHkZGRkMvl2L59Oy5fvoyoqChNDKlxjx49gre3Nzw8PNC/f/8iiWHKxLFo/o0nmrZo+enKHygUCuwP3INqbjVQqXKVLNdNzczg6lYDk6fNgt/O3Rg3eSquXL6IUT8NLcjQiYiIqITR2FTTtm3bMGjQINja2kIsFsPd3R29evVCcHCwpobUmOjoaLRr1w7GxsbYu3cvxGIxFDJZocawL2APbly9gjNX1Pv9Ll04j6jISAz9aUSWa6EvXqBr+9b4bd0mtO/YGQDQup0X7B0cMerH73Hy+FG0+MazQOInIiKikkVjC2vKly+Ps2fPIjk5Ga9evcK1a9cglUrh7OysqSE1IiEhAW3atEF8fDyOHDkCGxubIoljzvSf4dWpCyQSHYSFhiIsNBSJCfEAgMjwcERHRWbbLnC3P0QiETp365Hlmv/ObchIT8c3rduqlHu2aQcAuH7lcsHeBBEREZUYGn/pzcDAAAYGBnj37h2OHj2KxYsXa3rIApOeng4vLy88efIEJ06cQNWqVYsslojwcATu2YXAPbuyXPumsQdcqrnh5IWrKuUZGRk4fGAfGnzdGFbWWZPfuNhYCIIAuVyuUi6VvT+bRlbIs61ERERUfGgsiTx69CgEQUDlypXx999/Y/z48ahSpQoGDhyoqSELlFwuR8+ePXH58mXs378fHh4en26kQb47siaP+wL2YH/gXvy2fjOsbWyzXD957AgSEuKzLKj5yLlCBQiCgANBAfi2T9//97t3NwDA1a16AUVPREREJY3GksiEhARMnjwZ4eHhMDExQdeuXTFv3rxic7b02LFjceDAAXh5eeHt27fYvn27yvXe3bt/so/NG9YiMSEB0R8WEx3/6zCiIt/vkzl46I8wMjbGq7BQ7N31BwDg9q2bAP6/MbidvQO6f9sbQPYbiN+7ewcA0PybVjA1zbrtUMBuf+jq6qJ9h07ZxtezT1+s/W0lJvgMx707IahcpSru3g7Bjq2+qPxVVW40TkRERDnSEgRBKOog/itFRgYiRvkAAGxXroBIV/c/99m0aVOcPXs2x+vy9HTlmBZLlyDs9VvoG5VVSZJrV6uM8LDsz6C+ducRHBwdcfH8OXRtn/3iFY+vGyHo8LEcY1iyYC6WLZyH+89fZUkikxITUa2iI1p844nN2/1z7CMqMgKL583BxfNnER0VibImJvjGsy0mz5il0qdUKkVa4js42VkXm/8QICIiIs1hElkAY+aURJYkTCKJiIjonzS2OpuIiIiISi4mkURERESkNp5rV0DkcjmkUmlRh6E2kUik1hGKRERERACTyAIhl8sRHfsa4qQ0aGsXr/cFJWIRbKytmEgSERGRWphEFgCFQgGpTAFtnVLQLoRFPQVFLpchLTUJGRkZn1wsw43HiYiI6J+YRBYAkUgEibYIQmY6ZIL80w0+EzKpFOlJiUgz0IUsDyuuJdoiiER8jZaIiIiYRBYIsVgMK0tz6BoYF6vtb6RSKdIMJXCyzdu2PXx/koiIiD7itFIu7t+/j+7du8PZ2RmlSpWCmZkZGjdujIMHD2apKxaJIZFIlB+FQoGFc2aitmslVLSzQAfP5rh0/pxKnTUrl6Nj6xaoXtkZFWzN0bhuTcyeNhkJCfEq9aIiI2FvZpTt5/D+IJW6EokEfx7cj46tW8ClvD3cKjqhe8e2OHPqRJZ6EokEEu1synL4MIEkIiKijzgTmYvQ0FAkJSWhf//+sLGxQWpqKgICAtChQwesXbUK7XJpO+rH73FofxC+/3E4nMtXwK6d29CneycEHDqCeh4NAQB3Qm7CtVp1dOraHYaGpfHk8SPs2OqLE0eP4MSFqzAwMFDps3O3HmjRqrVKWa269VS+b1q/BlMnjEVLzzaY0rsvMjLSsWvndvTt0QWbt/2BdjkcgUhERESkDo2dWHPu3DksWbIEwcHBiIqKQlBQEDp16qS8PnPmTPj7++PVq1fQ0dFBrVq1MG/ePNSrVy/nTnNQmCfWyOVy1KpVC+lpaTjerDmArCfW3Ay+jrbNG2P6nPn4aeRoAEB6ejqa1q8FM3NzHDp+Jsf+D+0PwpB+vbFu8xZ06tYDABAWGoq6blVU+stJA/dqMDI2xl+nzkNLSwvA+yMQa3xVHl83bootf+xR1uUpNERERJRfGnucnZKSgurVq2P16tXZXq9UqRJWrVqFu3fv4sKFC3ByckKrVq3w+vVrTYVUIMRiMezt7RGfkJBjnUP7giAWi9F3wGBlmZ6eHnr3HYAb164iIvxVjm3tHRwBAAk59J+SkoLMzMwc2yclJcHM3EKZQAJAaSMjGBgYQk9PL8d2REREROrQWBLZpk0bzJ07F507d872eu/evdGyZUs4OzvDxcUFv/zyCxITE3Hnzh1NhZRvKSkpiIuLw7Nnz7B8+XL89ddfaN60aY717925DecKFVHayEilvGat2gCA+3f/f4+CIODNmzjExkTjyqULmDpxLMRiMRo0apyl32WL5qO8jRkcLcrAs2lDnDl5IkudBl83wukTx7Bp/RqEhYbi6ZPHmDTWB0mJCfj+R+98/gJEREREqj6LdyIzMzOxYcMGGBsbo3r16kUdThZjx47F+vXrAbxfodylSxf8tmIFUmfOyrZ+TEw0LC2tspRbWL0vi46KUpa9jo2BW6Vyyu82trZYs8kPFStVVpaJRFpo2rwl2rTvAGsbG4S+fIF1q39F724dscV/L77xbKOsO3fxMrx98wZTJ4zF1AljAQAmpmbYc+BP1K5b/z/8CkRERET/V6RJ5KFDh/Dtt98iNTUV1tbWOH78OMzMzIoypGz5+PigW7duiIyMxO7duyGXy3N9pJyelgadbN7L1NN9/zg5PT1NWVamrAl27zuM9Ix03LtzG38e2I+UlBSVdnb2DvAPUl0R3q1nbzSu545ZUyapJJGl9EuhfMVKsLa1xTeebZCcnIwNa37DoO96Yf9fJ1CufPl8/QZERERE/1SkSWSzZs0QEhKCuLg4bNy4ET169MDVq1dhYWFRlGFlUaVKFVSpUgUA0K9fP7Rq1Qodu3bFXvdaKu8efqSnr4/MjIws5ekZ6e+v6+kry3R0dND4wwKdVq3bolGTpvBq1Rxm5uZo1bptjjGVNTHBt3364rflSxEZEQ4bWzsAwJD+faCtrY1tuwKUdVu3bY8G7tWwYM4MbPDbno9fgIiIiEhVke4TaWBggAoVKqB+/frYvHkztLW1sXnz5qIMKU+6deuG6zdu4HkOi18sLa0QExOdpTw2+n2ZlbV1jn3XqecBSysrBO72/2QcHxPH+HfvAAChL17g9Ilj8GyjuvlQWRMT1PVogOtXL3+yTyIiIqK8+Kw2G1coFMjIZgbvc5OW9v5xdFJm9rG6VHPD87+fIikxUaX85o3ryuu5yUjPQOK/2mYn9OULAIDph1cAXr+OAfB+G6J/k0qlkMmKz5GMRERE9HnTWBKZnJyMkJAQhISEAABevHiBkJAQhIWFISUlBT///DOuXLmC0NBQBAcHY9CgQYiIiED37t01FZLaYmNjs5RJpVJs3boV+vr6qFjWJNt2Xp06Qy6XY5vf/2dVMzIy4L9jK9xr14GtnT1SUlKQmpqape2h/UGIj3+H6jXdlWVxcVm3PYqKjID/9q2o6loNllbvZzadnMtDJBJhf9Be/HP7z8iIcFy9fBGubp/foiUiIiIqnjT2TuSNGzfQrFkz5fcxY8YAAPr3749169bh0aNH2LJlC+Li4mBqaoo6derg/PnzcHFx0VRIahs2bBgSExPRuHFj2NraIjo6Gjt27MCjR4+wdNEiGDx/kW0799p14dWpC+bPmo64169Rzrk8dv+xHa/CQvHLqnUAgBfP/kaPju3QoUs3VKhUCSKRCLdv3UTArj9g7+Cosh3PnOlTEPriOb5u0gxWVtZ4FRaKbb6bkZqagjkLlyrrmZmZo9d3/bFjqy+6ebVB2w4dkZKUDL/N65GeloaRY8Zr9gcjIiKiL4bGTqwpTJo6scbf3x+bN2/G3bt38ebNG5QuXRq1atXCiBEj0N7TUznmv0+sAd6fULNo7iwE7PZHQvw7fOXiiolTZqBZy28AAG/exGHh7Jm4cukCIiLCIZNKYWfvgJaerTFq3ESYmv5/lXrQ3l3Y8vsmPH38GAnx72BkXAb1PRrAZ/wkuNWoqRKzTCbDlt834o+tW/DixTMAQI2atTB6wmR83biJSl2eWENERET5xSSyAMbMLoksDphEEhERUX59VgtriIiIiKh4YBJJRERERGr7LI49LAnkcjmkUmlRh6EWqVSa7XZARERERJ/CJLIAyOVyRMe+Bt6lQKydv8ndjIxMyNVMQsUSCXR1dfI1HgDIZQpAmsp3IomIiEhtTCILkpYW8vOGQGZmBh7ceQCpVKZWO4lEGy7VXaCjk8+FRFrFfk0VERERFREmkQVALBbDytIcugbG+ZrRS0lOQeSLcFia2Kmcq52b9PQ0xLwNh52VJQwMDdQeE3j/ODsjJQFisThf7YmIiOjLxSRSDfPmzcPUqVPh4uKCO8HBKtfEIjEkEokyiUxJTsbqX5fj1o3ruBV8A/Hx77BizQZ826evSrubwdex3c8Xl86fx6uwl5DLZbh1M+u529HREdi//w+cv3ACYWEvIBKJYG1rh8nTZsCzrepZ2f47tsHnp6HZ3sOdJy9gYWml/C4TMYEkIiIi9TGJzKPw8HDMnz8fBgZ5m/V78+YNflk0H7b29qharRounT+Xbb2Tx45izx/bYWfvBBsbe7x6lf0pOGfOHIHfltVo2rQ1vNr3QFpaKvYf9Ef/Xt2wfPV69PquX5Y2E6ZMh4Ojk0qZkXGZPMVPRERElBuNJZHnzp3DkiVLEBwcjKioKAQFBaFTp07K61paWtm2W7x4McaP//yO5xs3bhzq168PuVyOuLi4T9a3tLJSzvqF3AxG62ZfZ1tvwODvMXDIMITcvI9A/x05JpF16jTEn4dvoGxZUwBAakoyatSrg7kzxmHJ/NnZJpHNW7ZCDfdaatwlERERUd5obJ/IlJQUVK9eHatXr872elRUlMrn999/h5aWFrp27aqpkPLt3Llz2Lt3L1asWJHnNrq6uiqPjXNibmEJPf1PvwdZvnwVZQL5kUSigybNWyIyIgLJSUnZtktOSuI2PkRERFTgNDYT2aZNG7Rp0ybH61ZWqgnW/v370axZMzg7O2sqpHyRy+UYMWIEhgwZgmrVqhV1OFnEvY6FfqlS0C9VKsu1rl6tkZKcDB0dHTRt8Q1mzlsI5/IViiBKIiIiKmk+i3ciY2JicPjwYWzZsqWoQ8li3bp1CA0NxYkTJ4o6lCyioyNx9K/D8OrURWWFtb6+Pnr26YuGjZqgdOnSuBNyC+tW/4r23zTD8XOXYGtnX4RRExERUUnwWSSRW7ZsQenSpdGlS5eiDkXFmzdvMH36dEybNg3m5uZFHY6K9PQ0/PbLPOjp6WHqzDkq1zp26YaOXbopv7dp3wFNW7REpzbfYOXSxVi84rfCDpeIiIhKmM8iifz999/Rp08f6OnpFXUoKqZOnQoTExOMGDGiqENRIZfLMX3mKESEh8F3x25YWdt8sk09j4Zwr10H586cKoQIiYiIqKQr8iTy/PnzePz4MXbt2lXUoah4+vQpNmzYgBUrViAyMlJZnp6eDqlUipcvXyIlPR1liiDxnTNnLC5dOo0fR0yAx9eN8tzOxtYOz54+1WBkRERE9KUo8iRy8+bNqFWrFqpXr17UoaiIiIiAQqHAyJEjMXLkyCzXy1epgkGu1TCzYcNCjWv58lnYf8Afo0ZORZ2v1Rs79OVLmJqZaSgyIiIi+pJoLIlMTk7G33//rfz+4sULhISEwMTEBA4ODgCAxMRE7NmzB8uWLdNUGPnm6uqKoKCgLOVTp05FUlISli9ditK79xRqTFu2rMbWbWsxeNAo9Og+AC+isp9VjIt7DTMz1Xc4Txw7gjshNzHkh58KI1QiIiIq4TSWRN64cQPNmjVTfh8zZgwAoH///vDz8wMA+Pv7QxAE9OrVS1Nh5JuZmZnK5ugffdwrslOHDog4mfv7hZs3rEViQgKio6IAAMf/OoyoyAgAwOChP8LI2BivwkKxc6sfXoVF4tGjuwCAjZuWAwCsrezQvn13AMCpU39ixco5cHBwRrlyFXH06D7ExscgOvoF9PT00KRZc5hbWAIAvL5pBle36qhe0x1GRsa4ezsEf2zfAls7O4waO+E//zZEREREGksimzZtCkEQcq0zdOhQDB2a/RnPJcHa31YgPCxM+f3wwf04fHA/AKBrj14wMjZGWGgoli9ZqNJuzZpFAIBatTyUSeSTJ/cBAGFhzzF12vAsYwUcOqpMIjt26YYTR4/g7OmTSEtNhYWVFfr0H4Rxk35W1iEiIiL6L7SET2V6xYAiIwMRo3wAALYrV0Ckq1uoY1osXYKw12+hb1QWEolE7b6Sk5Nx5eINlLOuiFIGhnlqk5qSjBdRT1G/YW0YGuatzb9JpVKkJb6Dk511vuImIiKiL5fGjj0kIiIiopKLSSQRERERqa3It/gpKeRyOaRSab7aSqVSyGQyyGTSPPchk71vI5XmvU1246rTXiQSqRyvSERERF8uJpEFQC6XIzr2NcRJadDWVv/dwtTUVMS9i4ee5DX0dJIQn5SQa319PT0IgoC4d/GIiI5FqVLJ+YpbJpMiPSkR0AIkeYhboi2CvY01E0kiIiJiElkQFAoFpDIFtHVKQTsfi3q0FVoQ6xlCW88Qb5OS8P3o73Ot/22X79C5fZcPbQygrW+Qr7i1ZHIAIuiX/vSCIJlMBmlqEhQKBZNIIiIiYhJZEEQiESTaIgiZ6ZAJcrXbyzNSochMRWpSPCRaWpg8YmKu9S3MLZGaFA9FZirkGamQibXyGzr09XWhq6ubp8Qwfw/NiYiIqCRiElkAxGIxrCzNoWtgnK+tcjIyMvA6MhoZaakQBKBiBftPthGQClsrMzja2UD3P2xpxPcciYiIKD+YRObizJkzKqfu/NPFs2fxz1RPLBJDIpEok8iU5GSs/nU5bt24jlvBNxAf/w4r1mzAt336qvSz3e937N39B/5+/BgJiQmwtLRCPY8GGDFmPOzsHXKM7ca1K/i2sycA4P7zVzA1zflM7B4d2+HcmVMY+P0wLFi6QuWalbF+tm2mzJiNEWPG59gnERERfdmYRObByJEjUadOHZWyCuXLIyOXNm/evMEvi+bD1t4eVatVw6Xz57Ktd/fObTg4OsGzTTsYlymLV6EvsX2LL06fPIFTF6/CytomSxuFQoG506eilIEBUlNSco398IF9uHH9aq51mjRrge69+qiUubpVz7UNERERfdk0kkQuWLAAgYGBePToEfT19dGgQQMsWrQIlStXBgC8ffsWM2bMwLFjxxAWFgZzc3N06tQJc+bMgbGxsSZC+k8aNWqEbt26qZQpMjIQkUsbSysr3HnyAhaWVgi5GYzWzb7Ott6iX1ZmKWvdzgueTRtizx87sp0N3Oa7GZER4ejTbwA2rl2dYwzp6emYOWUShvuMxeJ5s3Os51yhArr1/PzOLyciIqLPl0Y2Gz979iy8vb1x5coVHD9+HFKpFK1atULKh1mzyMhIREZGYunSpbh37x78/Pxw5MgRDB48WBPhFIikpCTIZLI819fV1YWFpVW+xrJ3dAQAJCRk3ern3du3WDR3Fsb/PA1GxmVy7Wf1yl+gEBT4cYTPJ8dMS0tDenp6fsIlIiKiL5BGksgjR45gwIABcHFxQfXq1eHn54ewsDAEBwcDAFxdXREQEAAvLy+UL18ezZs3x7x583Dw4EG1ErXCMnDgQBgZGUFPTw/NmjXDjRs3CnyMt2/f4PXrWITcDIbPT8MAAI2aZH0fc9G82TC3tES/QUNy7S/8VRhWLV+KaTPnQl8/+/ceP9q1czucrU3hZFkWjerWROAe//zfCBEREX0RCuWdyI8zaiYmJrnWMTIygrb25/Oapo6ODrp27Yq2bdvCzMwMDx48wNKlS9GoUSNcOHMGFgU4Vs0q5ZGR8f4tSxMTU8xdvAxNmrdQqfPg3l1s892EHXv2fXJF9cwpk+DqVh2duvXItV6devXRoXNXODg6IToqCr6b1uOnIQORmJCIAUOG/rebIiIiohJL4xmbQqGAj48PGjZsCFdX12zrxMXFYc6cORg69PNKWho0aIAGDRoov3fo0AHdunWDm5sbfp42DZucyxfYWDv27kdGRjqePn6EgF3+SMtmwcyUiWPR/BtPNG3RMte+Lpw7i8MH9uHPk9kv5vmng8dOq3zv1bc/WjVpgAWzZ6Bnn76fnMUkIiKiL5PGk0hvb2/cu3cPFy5cyPZ6YmIi2rVrh6pVq2LmzJmaDuc/q1ChAjp27IjAwEDIncpBLCqYNwK+btwEANDiG0+0buuFph61UMrQEIOH/ggA2BewBzeuXsGZK8G59iOTyTB14lh0+7Y3ataqrXYcOjo6GPT9D5gwegTuhNxEPY+G6t8MERERlXgaeSfyo+HDh+PQoUM4ffo07OzsslxPSkpC69atUbp0aQQFBeVro+6iYG9vj8zMTKRq6P1NJ2dnuLpVR+Du/7+bOGf6z/Dq1AUSiQ7CQkMRFhqKxIR4AEBkeDiioyIBALv/2IFnT5+g38DBynphoaEAgOTkZISFhiI1NTXX8W0+/LOKf/dOA3dHREREJYFGZiIFQcCIESMQFBSEM2fOoFy5clnqJCYmwtPTE7q6ujhw4AD09PQ0EYpGPH/+HHp6ejDQYNKbnpaOjMz/70QZER6OwD27ELhnV5a63zT2gEs1N5y8cBUR4a8glUrh1ap5lnp7/tiBPX/sgO+OXWjTvkOOY4e+fAEAMDXLeQNzIiIi+rJpJIn09vbGzp07sX//fpQuXRrR0dEAAGNjY+jr6yMxMRGtWrVCamoqtm/fjsTERCQmJgIAzM3NP5tj+F6/fg1zc3OVstu3b+PAgQNo7ekJkVb+z6wG3j96Tk5KQpmyZVXKbwZfx8MH99C5e09lme+OrMnjvoA92B+4F7+t3wxrG1sAQKeu3eFazS1L3YF9eqJFq9b4rv9AuNd+v3F6XNxrmJmp3l9yUhI2rlkFE1MzuNVw/0/3R0RERCWXRpLItWvXAgCaNm2qUu7r64sBAwbg5s2buHr1/SkqFSpUUKnz4sULODk5aSIstfXs2VO5WbqFhQUePHiADRs2oFSpUlgwdy6wdl2u7TdvWIvEhARER0UBAI7/dRhRke+3KB889EcIggB3l4ro2LkbKn/1FUqVMsDDB/fgv2MbjIyMMWbCZGVf2c0c3rt7BwDQ/JtWymMPK1aqjIqVKmcbj4Ojo0o/vhvX48jhg2jVui1s7ewRExONP7ZvQcSrV1i1YTN0dHTU+LWIiIjoS6Kxx9m5adq06SfrfA46deqEHTt24JdffkFiYiLMzc3RpUsXzJgxA8729rmeWAMAa39bgfCwMOX3wwf34/DB/QCArj16wcraGn36DcDF8+dw6EAQ0tPSYGltjc5de8Bn/CQ4fNh0XFPq1vPAjatXsGOrH969fYNSpQxQs1ZtrFi1Hl83aarRsYmIiKh40xKKQzb3CYqMDESM8gEA2K5cAZGubqGOabF0CcJev4W+UdliszhIXVKpFGmJ7+BkZ11i75GIiIjyTqOrs4mIiIioZGISSURERERq+3zOGCzm5HI5pFJpvtqKRKLPZkU6ERERUV4wiSwAcrkc0bGvgXcpEGurP7krEYthbWX5WSeSMg1trE5ERETFE5PIgqSlBXXfEJDL5UhPegcjPe3PfsGKRFsEUQEd80hERETFG5PIAiAWi2FlaQ5dA2O1E0GpVIq0JD042X7+q5752J2IiIg+YhJZQMQiMSQSSb4SQZm2JN9tiYiIiIoCn01+ws2bN9GhQweYmJigVKlScHV1xa+//pprm1vBNzB5nA8a13NHOWtT1HKpiO/798Gzv58WUtREREREmsWZyFwcO3YMXl5eqFmzJqZNmwZDQ0M8e/YM4eHhubZbtWIZrl+9Aq9OnVHVpRpiY2Pw+4Z1+KaxBw6fOIuvqroU0h0QERERaYZGksgFCxYgMDAQjx49Up49vWjRIlSu/P8znYcNG4YTJ04gMjIShoaGyjpVqlTRREhqS0xMRL9+/dCuXTvs3bs3y4ISRUZGjm1/GD4SazdvUTl7umOXbmjmURurli/F6o2+GoubiIiIqDBo5HH22bNn4e3tjStXruD48eOQSqVo1aoVUlJSlHVq1aoFX19fPHz4EEePHoUgCGjVqhXkcrkmQlLbzp07ERMTg3nz5kEkEiElJQUKhSJPbevU81BJIAHAuXwFVK5SFU8fP9ZEuERERESFSiMzkUeOHFH57ufnBwsLCwQHB6Nx48YAgKFDhyqvOzk5Ye7cuahevTpevnyJ8uXLayIstZw4cQJGRkaIiIhAp06d8OTJExgYGKBv375Yvnw5dLS01OpPEAS8fh2DylWqaihiIiIiosJTKAtrEhISAAAmJibZXk9JSYGvry/KlSsHe3v7wgjpk54+fQqZTIaOHTvC09MTAQEBGDRoENatW4eBAweq3V/Abn9ERUaiQ5duGoiWiIiIqHBpfGGNQqGAj48PGjZsCFdXV5Vra9aswYQJE5CSkoLKlSvj+PHjWR4DF5Xk5GSkpqbihx9+UK7G7tKlCzIzM7F+/XrMnDoVpfLY19MnjzF5nA9q162Hnr2/01zQRERERIVE4zOR3t7euHfvHvz9/bNc69OnD27duoWzZ8+iUqVK6NGjB9LT0zUdUp7o6+sDAHr16qVS3rt3bwDA5StX8tRPbEw0vuveGUZGRti0dSc36yYiIqISQaNJ5PDhw3Ho0CGcPn0adnZ2Wa4bGxujYsWKaNy4Mfbu3YtHjx4hKChIkyHlmY2NDQDA0tJSpdzCwgIAEB8f/8k+EhMS0LtrJyQmJGBnwAFYWdsUeJxERERERUEjSaQgCBg+fDiCgoJw6tQplCtXLk9tBEFARi5b5xSmWrVqAQAiIiJUyiMjIwEAZmZmubZPT09Hv2+74tmzp9i2OwCVq3ylmUCJiIiIioBGkkhvb29s374dO3fuROnSpREdHY3o6GikpaUBAJ4/f44FCxYgODgYYWFhuHTpErp37w59fX20bdtWEyGprUePHgCAzZs3q5Rv2rQJ2traaPphlXl25HI5hg3sixvXrmLjlh2oXbe+RmMlIiIiKmwaWVizdu1aAEDTpk1Vyn19fTFgwADo6enh/PnzWLFiBd69ewdLS0s0btwYly5dUj4uLmo1a9bEoEGD8Pvvv0Mmk6FJkyY4c+YM9uzZg8mTJ8PGxgYRObSdOWUijv55CK3atEP8u3fYu+sPlevdevbKoSURERFR8aCRJFIQhFyv29jY4M8//9TE0AVq3bp1cHBwgK+vL4KCguDo6Ijly5fDx8cn1xNr7t29AwA49tdhHPvrcJbrTCKJiIiouOPZ2bmQSCSYMWMGZsyYoVa7oMPHNBQRERER0eehUDYbJyIiIqKShUkkEREREamNj7MLiFwuh1QqVbudVCpVfkoKkUjETdWJiIhKOCaRBUAulyM69jXwLgVibfUmd+UyBaRpyYAWINGWaCjCwiXRFsHexpqJJBERUQnGJLIgaWlB3TcExNoi6JU1gYGxaYlIumQyGaSpSVAoFCXifoiIiCh7TCILgFgshpWlOXQNjCGRqD+bWNIe/5acB/NERESUEy6sycWAAQOgpaWV7Uesp4folGRlXbFIDIlEovxkZmRg+ZKF6NezK6pVcIS9mRECdvur1Pn4+ZhASqVSNKpbE1bG+ljz6/JsY3r5/Dl+HNwfLuUd4GRZFh41XbFgtuoWRFbG+jl+enRsp6y3ZMHcXOteu3JJ7T6JiIjoy8CZyFwMGzYMLVu2VCkTBAE//PADnBwdYWVgmGPbN2/e4JdF82Frb4+q1arh0vlznxxv8/o1iAh/leP1e3duo0t7T1hZ2+CH4SNhYmKK8PBXiIwIV6m3asPvWdrevhWMjWtXo0nzFsqydl4dUc65fJa6C2ZPR0pyCmq411a7TyIiIvoyaCSJXLBgAQIDA/Ho0SPo6+ujQYMGWLRoESpXrqys8+zZM4wbNw4XLlxARkYGWrdujd9++w2WlpaaCClfPDw84OHhoVJ24cIFpKamove33wKRUTm2tbSywp0nL2BhaYWQm8Fo3ezrXMd6/ToWvyxegOE+Y7F43uws1xUKBYYPG4wKFSsh4NBR6Ovr59hXdifiXDp/DlpaWujcrYeyrKprNVR1raZSLyL8FSIjItCn30Do6Oio3ScRERF9GTTyOPvs2bPw9vbGlStXcPz4cUilUrRq1QopKSkAgJSUFLRq1QpaWlo4deoULl68iMzMTHh5eUGhUGgipAKzc+dOaGlpoVfPnrnW09XVhYWlVZ77nTdzGspXqIiuPbI/EvHMqRN49OA+xk6aAn19faSmpkIul+ep74yMDBw+sA8eXzeCja1drnWD9u6GIAjo0uPbAuuTiIiISh6NzEQeOXJE5bufnx8sLCwQHByMxo0b4+LFi3j58iVu3boFIyMjAMCWLVtQtmxZnDp1Kssj5M+FVCrF7t270aBBAzg5OSGigPq9GXwdu3dux4GjJ6GlpZVtnXOnTwEAdHV00apJQ9wJuQkdHR20ad8BC5etRFkTkxz7P3nsCBIS4tG1e+6JIQAE7tkFWzs7eDTMfeZUnT6JiIio5CmUhTUJCQkAAJMPiU5GRga0tLSgq6urrKOnpweRSIQLFy4URkj5cvToUbx58wZ9+vQpsD4FQcCU8WPQsUs31K5bP8d6L54/AwAMHfAdKlaqhE1bd8LbZywOH9iHft92hSAIObYN2O0PXV1dtO/YOddYHj18gAf37qJT1x45JrPq9klEREQlk8YX1igUCvj4+KBhw4ZwdXUFANSvXx8GBgaYOHEi5s+fD0EQMGnSJMjlckRF5fyeYVHbuXMnJBIJevQouHcA/Xdsw6MH97Fp685c66Ukv18JXt29FlZv9AUAtO/YGaX09TFv1nScP3MajZs1z9IuKTERJ48dQYtvPGFcpkyuYwTu9gcAdP3Eo2x1+iQiIqKSSeMzkd7e3rh37x78/f2VZebm5tizZw8OHjwIQ0NDGBsbIz4+Hu7u7hCJPs9dh5KTk7F//354enrC1NS0QPpMSkzE/FnT8ePI0bC1s8+1rt6HhTT/XsTSufv7dzOvX7uSbbtDB/YhPT39k+84CoKAwL27UKWqS5bFNvntk4iIiEoujc5EDh8+HIcOHcK5c+dgZ6e6+KJVq1Z49uwZ4uLioK2tjTJlysDKygrOzs6aDCnf9u3bh9TU1AJ9lL3mtxWQZmaiY5duCAsNBQBERb7frichPh5hoaGwsraGjo4OrKysAQDm5hYqfZh9+J4Q/y7bMQJ3+8PI2BjftG6bayzXrlxCeFgYpszIujI8v30SERFRyaWRaT9BEDB8+HAEBQXh1KlTKFeuXI51zczMUKZMGZw6dQqxsbHo0KGDJkL6z3bs2AFDQ8MCjS8i/BXi49+hST131HWrgrpuVdCx9ftFRSuXLUZdtyp48ughAMCtRk0AQFRUpEofMR8e/5uammfpPyY6ChfPn0U7r04q759mJ2D3rvfb9XTPfdW5On0SERFRyaWRmUhvb2/s3LkT+/fvR+nSpREdHQ0AMDY2Vu5v6Ovri6+++grm5ua4fPkyRo0ahdGjR6vsJfm5eP36NU6cOIFevXqhVKlSBdbvkGE/oU07L5WyuNevMd5nOHr26YvWbdvDwdEJANC6XXtMmzQOu3Zsxbd9+iof++/Y+v79yOzeh9wXsAcKheKT7zhKpVIc2heIeh4NYGfvkGvdvPZJREREJZtGksi1a9cCAJo2bapS7uvriwEDBgAAHj9+jMmTJ+Pt27dwcnLClClTMHr0aE2E85/t2rULMplM7UfZmzesRWJCAqI/zBYe/+swoiLfbww0eOiPcKtRUznD+NHHx9qVq3yFNu3/P+tpYWmFUeMmYvG82ejVpQNat/PCg3t3sX3L7+jcrQdq1qqNfwvYvQtW1tZo0KhxrnGePnkcb9++QZc8bNeT1z6JiIioZNNIEpnbdjMfLVy4EAsXLtTE8AVux44dsLCwUHv/yrW/rUB4WJjy++GD+3H44H4AQNcevWBkbKxWf6PHT4JxmTL4ff1aTJ88HhaWlvAZNxFjJv6cpe7fT5/gTshNDBs+8pOLlQI/nOnt1alLrvXU6ZOIiIhKNi0hLxnfZ06RkYGIUT4AANuVKyAqhHf1/jmmxdIlCHv9FvpGZSGRSDQ+9udMKpUiLfEdnOysv/jfgoiIqCTjdBIRERERqY1JJBERERGpTeMn1nwp5HI5pFKp2u1EIhHEYrEGIiIiIiLSHCaRBUAulyM69jXESWnQ1lbvPUCJWAQbaysmkkRERFSsMIksAAqFAlKZAto6paCtxqIeuVyGtNQkZGRklJhFKDKZrKhDICIiokLAJLIAiEQiSLRFEDLTIRPkeW4nk0qRnpSINANdyEpIEgkAEm0RtwAiIiIq4ZhEFgCxWAwrS3PoGhirNaMolUqRZiiBk23J2g6H73kSERGVfEwic/H06VNMmzYNFy5cwNu3b+Hg4IDevXtj3Lhx0PtXkiQWiSGRSJTJ4PNnf2PR3Fm4duUS4t+9g62dPTp374kfR/ioHJ0o05aotCMiIiIqDphE5uDVq1eoW7cujI2NMXz4cJiYmODy5cuYMWMGgoODEbR7d45tI8JfoU2zRihtbIRB3/+AMmVNcOP6VSyZPwd3Qm5hyx97CvFOiIiIiAqexs7OXrt2LV6+fAkAcHFxwfTp09GmTRsAQHp6OsaOHQt/f39kZGTA09MTa9asgaWlpSbCyZdt27YhPj4eFy5cgIuLCwBg6NChUCgU2Lp1K969e5dj273+fyAhIR77j55Ela+qAgD6DhwMhUKBPX/sQPy7dyhTtmyh3AcRERGRJmhk9YOdnR0WLlyI4OBg3LhxA82bN0fHjh1x//59AMDo0aNx8OBB7NmzB2fPnkVkZCS6dMn93ObClpiYCABZEltra2uIRCLo6Ojk2DYp6X1bcwsLlXJLS6v3i3ByaUtERERUHGgkifTy8kLbtm1RsWJFVKpUCfPmzYOhoSGuXLmChIQEbN68Gb/88guaN2+OWrVqwdfXF5cuXcKVK1c0EU6+NG3aFAAwePBghISE4NWrV9i1axfWrl2LkSNHwsDAIMe2DRo1BgCMGf4j7t25jYjwV9gXsAdbft+IIT/8lGtbIiIiouJA4+9EyuVy7NmzBykpKfDw8EBwcDCkUilatmyprFOlShU4ODjg8uXLqF+/vqZDypPWrVtjzpw5mD9/Pg4cOKAsnzJlCubOnQtFRkaObZu3bIWJU2fg12WLcfTPQ8pyn3ETMWnaTE2GTURERFQoNJZE3r17Fx4eHkhPT4ehoSGCgoJQtWpVhISEQEdHB2XKlFGpb2lpiejoaE2Fky9OTk5o3LgxunbtClNTUxw+fBjz58+HlZUVfvr++1zb2js4on6Dr9GuQyeUNTHBiaNHsHLZYphbWmLw0B8L6Q6IiIiINENjSWTlypUREhKChIQE7N27F/3798fZs2c1NVyB8/f3x9ChQ/HkyRPY2dkBALp06QKFQoGJEyeiZy7vcO7buxvjR3njYvAd2Ni+b9uuQycoBAXmzpiKzt16wMTEtFDug4ioJFFkZCBilA8AwHblCojUOCUsP/0rxGLI5Xk/ROIjsVgMbW1ugEIlm8b+DdfR0UGFChUAALVq1cL169excuVK9OzZE5mZmYiPj1eZjYyJiYGVlZWmwlHbmjVrULNmTWUC+VGHDh3g5+eHWyEh+CqHtn6bN8DVrboygfzIs0077NqxDfdu30bjZs01FDkRERUEmUyGx3+/QLpU/eNc9STa+KpyBSaSVKIV2r/dCoUCGRkZqFWrFiQSCU6ePImuXbsCAB4/foywsDB4eHgUVjifFBMTg7LZbMMjlUoBALJc/sv0dWwsjP/1uF61Lc+XJiL63MnlcqRLZdAxMoGOTt5nPDMzM5Ce+BZyuZxJJJVoGvm3e/LkyWjTpg0cHByQlJSEnTt34syZMzh69CiMjY0xePBgjBkzBiYmJjAyMsKIESPg4eHx2SyqAYBKlSrh2LFjePLkCSpVqqQs/+OPPyASieDm6grh8J/ZtnWuUBFnT53As7+fonyFisryfQG7IRKJUNXFVePxExFRwdDR0YWumo/NMzUUC9HnRCNJZGxsLPr164eoqCgYGxvDzc0NR48exTfffAMAWL58OUQiEbp27aqy2fjnZPz48fjrr7/QqFEjDB8+HKampjh06BD++usvDBkyBDY2NojIoe1PI0fj1PGj6Ni6JQYN/QFly5rg+NG/cOr4UfTpNxBW1jaFei9EREREBU0j+0Ru3rwZL1++REZGBmJjY3HixAllAgkAenp6WL16Nd6+fYuUlBQEBgZ+Vu9DAkDjxo1x6dIl1KpVC2vWrIGPjw+ePXuGefPmYe3atbm29Wj4NQ4ePw23GjXht2kDpk8ej9AXzzF52iwsWv5rId0BEdGXIyUlBRMmTEDFihVRqlQp5QTGkiVLIAhCgY4VHhaKsd5D0cCtElydLNGtbQvcuHKpQMcoKvn5HWUyGZYtW4aqVauiVKlScHJywvz589Ua99y5c/Dy8oKNjQ20tLSwb9++LHUEQcD06dNhbW0NfX19tGzZEk+fPs3PbeaZXC7HtGnTUK5cOejr66N8+fKYM2eOym+RnJyM4cOHw87ODvr6+qhatSrWrVv3yb737NmDKlWqQE9PD9WqVcOff2b/dPNzxpc1clG3bt0c/6EqPrFaz71WHezcu08DURERFV8xMTHo3LkzJBIJxGIxduzYgWfPnmHChAkQiURYu3YtqlWrpna/3t7e2LJlC4D3R+0mJCTg7t27mDBhAvT09DBixIgCiT8pMQHd27VE1Wpu2LB9NwwMDbFu5TIM7t0NF24/QunSRgUyTlHJz+84cuRIBAQEYN26dahZsyYuX76MgQMHwsbGBgMGDMjTuCkpKahevToGDRqU4wl2ixcvxq+//ootW7agXLlymDZtGjw9PfHgwQPo6enl+55zs2jRIqxduxZbtmyBi4sLbty4gYEDB8LY2BgjR44EAIwZMwanTp3C9u3b4eTkhGPHjuGnn36CjY0NOnTokG2/ly5dQq9evbBgwQK0b98eO3fuRKdOnXDz5k24uhafV940MhNJRESUHTMzM1y4cAFnz55Fv379sHnzZkyZMgWHDx/Gzp07MXHixHz1e+HCBQDvD4q4d+8enjx5okwsQkNDCyz+G1cvIzYmGot/XQdXtxoo51wB/Yf8iOTkJMRGRxXYOEUlP7/jnj17MG7cOHTu3BlOTk7o1asXqlSpgkePHgEAzpw5Ax0dHZw/f17ZZvHixbCwsEBMTAwAoE2bNpg7dy46d+6c7RiCIGDFihWYOnUqOnbsCDc3N2zduhWRkZHZzloWlEuXLqFjx45o164dnJyc0K1bN7Rq1QrXrl1TqdO/f380bdoUTk5OGDp0KKpXr65S599WrlyJ1q1bY/z48fjqq68wZ84cuLu7Y9WqVRq7F01gEklERIVGLBZDJHr/V09SUhLKly8PsViMsmXLwsHBAW/fvs1Xv40aNQIAHDlyBK6urqhUqRLS09PRqFEjjB07tsDir1CpCnR0dHD08EEoFArExcZi5ZL5qOvREM4VKn26AzW0adMGhoaGOX5cXFwKdDwgf79jzZo1ceLECcTHx0MqlWLTpk149uwZvvvuOwDvjxH28fFB3759kZCQgFu3bmHatGnYtGkTLC0t8xTXixcvEB0drXLanbGxMerVq4fLly/n2G7+/Pm5/oaGhoYICwvLsX2DBg1w8uRJPHnyBABw+/ZtXLhwAW3atFGpc+DAAUREREAQBJw+fRpPnjxBq1atcuz38uXLKvcCAJ6enrney+eIj7OJiKhQhYSEYNiwYYiPj8exY8ewa9cu5TVtbW1kZmZCR0dHrT7XrVsHhUKBrVu34v79+wDe71fs5uaW7XZt+WXn4IgR4yZh+gQfzJo8FjKZDIN/GI7Rk6ZBS0urwMYBgE2bNiEtLS3H6xKJpEDHA/L3Oy5YsABeXl4wMTGBSCSCu7s7Ll26pPJYdu7cuTh+/DiGDh2Ke/fuoX///jk+6s3OxxPt/p10fuq0ux9++AE9evTItW8bm5wXu06aNAmJiYmoUqUKxB82np83bx769OmjrPPbb79h6NChsLOzg7a2NkQiETZu3IjGjRvnej/q3svnqEQkkSJdXdivy32xC1CwJx38c0zl/o8y9fZ/VLc+EVFJUKNGDVy9ehW7d+/GvHnzkJiYqLwmk8nUTiCB97t+bNu2DQ0bNkRQUBBev36Nxo0bY/Xq1dDW1saKFSv+c9yCIGDEkH6IiY6C3659MDE1w+6dW3H4QBC+9/aBfqlS/3mMf7K1tS3Q/vJC3d8xICAA3t7emDVrFjw8PHD//n0MHz4cISEhKu+26ujoYMeOHXBzc4OjoyOWL19eKPdjYmICExOTfLffvXs3duzYgZ07d8LFxQUhISHw8fGBjY0N+vfvD+B9EnnlyhUcOHAAjo6OOHfuHLy9vWFjY5NltrGkKRFJZFETiUSQaIsgTU2CVM22Em2R8tEOEVFJ989ZRmNjYxgaGkImkyE+Ph5JSUn5+gs/NTUV06ZNgyAI6Nq1K8zNzWFubo6GDRviwIEDOHHiRIHEfuzwAZw/fRIXQh6itJExAGDmgqU4dvgADgTuxuAfC2bxzkdt2rRReY/w3xwdHZWzhQVB3d9RJpNh6NChWLp0KQYOHAgAcHNzw927d7FkyRL07dtXpf6lS+9XsL99+xZv376FgYFBnmP7uINLTEwMrK2tleUxMTGoUaNGju3mz5//yZXiDx48gIODQ7bXxo8fj0mTJuHbb78FAFSrVg2hoaFYsGAB+vfvj7S0NPz8888ICgpCu3btALz/DUJCQrB06dIck0grKyvl+6D/vJfPbaeaT2ESWQDEYjHsbayhUCjUbisSiSAWizUQFRHR5yckJATjxo2DWCyGnp4efv/9dzx9+hRt27aFlpZWvvYMTk1NVT7ZCQ4OBgCkp6crEyx1kpXc/P30CUzNLZQJJAAkJychMTEBYg2cTFPYj7PV/R1jYmLw9u1blQM5ACA8PDzLST3Pnj3D6NGjsXHjRuzatQv9+/fHiRMn8jyJUq5cOVhZWeHkyZPKpDExMRFXr17Fjz/+mGO7//o4OzU1NUuMYrFY+fe9VCqFVCrNtU52PDw8cPLkSfj4+CjLjh8//lmd3JcnwhdEnp4uhA37QQgb9oMgT08v6nCIiEhNOf053rhxYwGAAECoUKGCYGlpqfy+evXqfPWfmpAgXLt1V3jwKk54Fpsk/LH/L0FLS0sYM3m6cPraHWHP4RNC/a8bC2bmFsLV+8+FZ7FJwrPYJOHBqzjh2q27Qnox/HsmL79j3bp1hTVr1ggKhUIoX7680KRJEyE4OFh49OiRMHv2bEFLS0vw8/NT9imTyYT69esLXbt2FQRBECIjIwVTU1Nh8eLFyjpJSUnCrVu3hFu3bgkAhF9++UW4deuWEBoaqqyzcOFCoUyZMsL+/fuFO3fuCB07dhTKlSsnpKWlaez36N+/v2BrayscOnRIePHihRAYGCiYmZkJEyZMUNZp0qSJ4OLiIpw+fVp4/vy54OvrK+jp6Qlr1qxR1unbt68wadIk5feLFy8K2trawtKlS4WHDx8KM2bMECQSiXD37l2N3YsmMIkkIqJiI6c/x9++fStMmDBBqFSpklCqVCmhbNmyQr169YTt27fnu/9/J5HPYpOEpas2CBWrfCXo6ukJ1rZ2Qtdv+wjngu8rrxf3JPJTv2NkZKQAQAgICBAEQRAePXoktGvXTihTpoxQpkwZ4euvvxYOHjyo0uesWbMEa2trIS4uTlkWEBAg6OjoCCEhIYIgCMLp06eVyeo/P/3791e2USgUwrRp0wRLS0tBV1dXaNGihfD48WON/h6JiYnCqFGjBAcHB0FPT09wdnYWpkyZImRkZCjrREVFCQMGDBBsbGwEPT09oXLlysKyZcsEhUKhrNOkSROVexEEQdi9e7dQqVIlQUdHR3BxcREOHz6s0XvRBC1BKOCt/D9jBbmwhoiICp+m/xz/Z/9mixfh3vMwGJpZq3V2dkZGBpLjouD2VUW1z9wmKk64ooOIiIiI1MYkkoiIiIjUVixXZ8vl8nythFZIpZB+OPM6u9VUecUV1URERPSlK3ZJpFwuR3R4OBSZ6u7ICAiZGXiTnAwA0A4NhZZO/t5VEelIYGVnx0SSiOgLkJmZodH6RMVVsUsiFQoFFJlSGEskWfah+hRBLELmh01uTfX185VEymQyJGRKoVAomEQSEZVgYrEYehJtpCe+RaaabfUk2vw7gkq8Yrc6WyqVIvplKEz19TVybmhexn+TlgYrJ8ciGZ+IiAqPTCaD/MNrUOoQi8VqT3QQFTf8N5yIiCgH2traTAaJclBiVmc/ff4cfYYNRbmaNWBczgmuXzfE3GXLkJqaqlJPoVBgw5YtqN2iOco6l4Odqwu8evXC5evXiyhyIiIiouKnRDzOfhURgVrNm8G4tBG+798PJmXK4MqNYGzd5Y/2np4I3LJV2X7CjBlYsX4denfrhq/r1UN8QiI2bduKsIgInD1wEHXc3T85Ph9nExER0ZeuRMzR79i7B/EJCTi9/wBcqlQBAAzp2w8KhQLb9+zGu/h4lC1TBjKZDOu3bkGX9l7wW7Va2b6rlxcq16uLPwIDPplEEhERfW5evnyJcuXK4XOdF3JycoKfnx+aNm0KAGjatClq1KiBFStWFNgYgiBg2LBh2Lt3L969e4dbt26hRo0aBdY/ZVUiHmcnJiUBACzNzVXKrSwtIBKJoPNhxlAqlSItLS1LPQszM4hEIujp6RVOwEREVGAGDBiATp06qZTt3bsXenp6WLZsWdEE9ZlzcnIq0ATuc3DkyBH4+fnh0KFDiIqKgqura1GHVOKViCSySYOGAIChY0Yj5N49vIqIwO59+7BhyxYMHzIEBgYGAAB9fX3UdXfH1l3+2BmwF2Hh4bjz4D4GjxqFsmXKYEjfvkV5G0REVAA2bdqEPn36YO3atRg7dmxRh6NR+T18oyR69uwZrK2t0aBBA1hZWXFBVCEoEUmkZ/PmmDlxIk6eO4e6LVugfC13fPfDMPw0eDCWzp6jUtdv9RpUqlABA7y9UaF2LdRu3hwhd+/gzIGDcHZ0KpobICKiArF48WKMGDEC/v7+GDhwoLJ8//79cHd3h56eHpydnTFr1izIZDIAwKBBg9C+fXuVfqRSKSwsLLB58+Y8jXvkyBF8/fXXKFOmDExNTdG+fXs8e/ZMpc6lS5dQo0YN6OnpoXbt2ti3bx+0tLQQEhKirHPgwAFUrFgRenp6aNasGbZs2QItLS3Ex8cDAPz8/FCmTBkcOHAAVatWha6uLsLCwrLEIwgCZs6cCQcHB+jq6sLGxgYjR44E8P5RcmhoKEaPHg0tLS1oaWkp2124cAGNGjWCvr4+7O3tMXLkSKSkpCivOzk5Ye7cuejXrx8MDQ3h6OiIAwcO4PXr1+jYsSMMDQ3h5uaGGzdu5Ol3+ygjIwPjxo2Dra0tDAwMUK9ePZw5c0Z5/c2bN+jVqxdsbW1RqlQpVKtWDX/88Yfy+oABAzBixAiEhYVBS0sLTk5Oao1P+VMikkgAcLR3QKP69bF26VLs2vw7BvTqhUUrV2LNv/4AKG1ogKqVKuPHgYOw+3df/LZwEWQyOboNHIC4N2+KKHoiIvqvJk6ciDlz5uDQoUPo3Lmzsvz8+fPo168fRo0ahQcPHmD9+vXw8/PDvHnzAABDhgzBkSNHEBUVpWxz6NAhpKamomfPnvDz81NJtLKTkpKCMWPG4MaNGzh58iREIhE6d+6snCVMTEyEl5cXqlWrhps3b2LOnDmYOHGiSh8vXrxAt27d0KlTJ9y+fRvDhg3DlClTsoyVmpqKRYsWYdOmTbh//z4sLCyy1AkICMDy5cuxfv16PH36FPv27UO1atUAAIGBgbCzs8Ps2bMRFRWlvO9nz56hdevW6Nq1K+7cuYNdu3bhwoULGD58uErfy5cvR8OGDXHr1i20a9cOffv2Rb9+/fDdd9/h5s2bKF++PPr166fW+5nDhw/H5cuX4e/vjzt37qB79+5o3bo1nj59CgBIT09HrVq1cPjwYdy7dw9Dhw5F3759ce3aNQDAypUrMXv2bNjZ2SEqKgrXueNK4RCKmczMTCHsyVMh5VW4kBkdI2RGxwjb1q0T9PX1hec3bynLMqNjhH49vxVK6esLUQ8eCpnRMUJqeITgUqWK8NOgQSr17l+6LEgkEmGs93CV8uw+Ka/ChbAnT4XMzMyi/imIiEgQhP79+ws6OjoCAOHkyZNZrrdo0UKYP3++Stm2bdsEa2tr5feqVasKixYtUn738vISBgwYIAiCIAQGBgqVK1dWK6bXr18LAIS7d+8KgiAIa9euFUxNTYW0tDRlnY0bNwoAhFu3bgmCIAgTJ04UXF1dVfqZMmWKAEB49+6dIAiC4OvrKwAQQkJCVOq9ePFC+Odf6cuWLRMqVaqU499Vjo6OwvLly1XKBg8eLAwdOlSl7Pz584JIJFLG7ejoKHz33XfK61FRUQIAYdq0acqyy5cvCwCEqKgolfFOnz6t/N6kSRNh1KhRgiAIQmhoqCAWi4WIiAiVsVu0aCFMnjw52/gFQRDatWsnjB07Vvl9+fLlgqOjY471qeCViJnI9X5+qOHqCjsbG5Xy9p6eSE1LQ8i9uwCA81cu4/6jR2jv2VqlXkVnZ1SpWBGXr18rtJiJiKjguLm5wcnJCTNmzEBycrLKtdu3b2P27NkwNDRUfr7//ntERUUp9xIeMmQIfH19AQAxMTH466+/MGjQIABA586d8ejRo1zHf/r0KXr16gVnZ2cYGRkpH6d+fNT8+PFjuLm5qSzgrFu3rkofjx8/Rp06dVTK/l0HAHR0dODm5pZrPN27d0daWhqcnZ3x/fffIygoSPn4Pie3b9+Gn5+fyu/k6ekJhUKBFy9eKOv9c2xLS0sAUM5y/rMsNjY21/E+unv3LuRyOSpVqqQy9tmzZ5WvBMjlcsyZMwfVqlWDiYkJDA0NcfTo0Wwf5VPhKRFvnca8fo2yxsZZyqVSKQBAJpMr6wHI9ggrqVT2yf+DERHR58nW1hZ79+5Fs2bN0Lp1a/z1118oXbo0ACA5ORmzZs1Cly5dsrT7mNT169cPkyZNwuXLl3Hp0iWUK1cOjRo1yvP4Xl5ecHR0xMaNG2FjYwOFQgFXV1dkZqp76van6evrf/Lxur29PR4/fowTJ07g+PHj+Omnn7BkyRKcPXs2xz2Ok5OTMWzYMOW7k//k4OCg/N//bP8xjuzK8rrgJzk5GWKxGMHBwVnOGzc0NAQALFmyBCtXrsSKFStQrVo1GBgYwMfHRyO/L+VdiUgiKzo748TZs3jy7BkqlS+vLN+1LwgikQjVqlYFAFRyfn9t97598GzeXFnv1p07ePLsbwz5jquziYiKK0dHR5w9e1aZSB45cgSlS5eGu7s7Hj9+jAoVKuTY1tTUFJ06dYKvry8uX76ssijnU968eYPHjx9j48aNysTzwoULKnUqV66M7du3IyMjA7q6ugCQ5b29ypUr488//1Qp+y/v9unr68PLywteXl7w9vZGlSpVcPfuXbi7u0NHRyfLhIq7uzsePHiQ6++kCTVr1oRcLkdsbGyOifvFixfRsWNHfPfddwDeJ6hPnjxB1Q9/v1PRKBGPs8f+5A25XI7mHTtg3i+/YJ2vLzr07o0Df/2FAb16wcbKCgDgXr06WjZpgm27d6H7oIHYsGULZi1ejNY9ukNfTw8jhg4t4jshIqL/wt7eHmfOnEFsbCw8PT2RmJiI6dOnY+vWrZg1axbu37+Phw8fwt/fH1OnTlVpO2TIEGzZsgUPHz5E//79leVBQUGo8uEgi+yULVsWpqam2LBhA/7++2+cOnUKY8aMUanTu3dvKBQKDB06FA8fPsTRo0exdOlSAP+fuRs2bBgePXqEiRMn4smTJ9i9ezf8/PxU6uSVn58fNm/ejHv37uH58+fYvn079PX14ejoCOD9Kutz584hIiICcXFxAN4vTLp06RKGDx+OkJAQPH36FPv378+ysKagVapUCX369EG/fv0QGBiIFy9e4Nq1a1iwYAEOHz4MAKhYsSKOHz+OS5cu4eHDhxg2bBhiYmI0Ghd9WolIIht5eODcwUNwd6uO9X6+GDt9Gp6FvsTsyZOxatFilboBflswY8JEPPn7GcbPnIFVmzbCo04dnD5wEJUL+b++iIio4NnZ2eHMmTOIi4uDp6cnPDw8cOjQIRw7dgx16tRB/fr1sXz5cmVC9VHLli1hbW0NT09P2PzjHfuEhAQ8fvw4x/FEIhH8/f0RHBwMV1dXjB49GkuWLFGpY2RkhIMHDyIkJAQ1atTAlClTMH36dAD/f6Rerlw57N27F4GBgXBzc8PatWuVq7M/zl7mVZkyZbBx40Y0bNgQbm5uOHHiBA4ePAhTU1MAwOzZs/Hy5UuUL18e5h8O4HBzc8PZs2fx5MkTNGrUCDVr1sT06dNVfgtN8fX1Rb9+/TB27FhUrlwZnTp1wvXr15WP0adOnQp3d3d4enqiadOmsLKyyrLBPBW+EnF2dmGPz7OziYhKnuTkZNja2sLX1zfb9ycL2o4dOzBw4EAkJCRAX18/2zrz5s3DunXr8OrVq1z7Km7HHlLJUCLeiSQiIsovhUKBuLg4LFu2DGXKlEGHDh00Ms7WrVvh7OwMW1tb3L59GxMnTkSPHj1UEsg1a9agTp06MDU1xcWLF7FkyRKNP04myi8mkURE9EULCwtDuXLlYGdnBz8/P40dlxcdHY3p06cjOjoa1tbW6N69u3LD84+ePn2KuXPn4u3bt3BwcMDYsWMxefJkjcRD9F/xcXY+xufjbCIi+pzEx8djxYoVmDlzZlGHkq0VK1agU6dOPI6whGESmY/xmUQSERHRl65ErM4mIiIiosJVbN+JLKrTZXiqDREREVExTCJFIhFEOhIkZEqBD8caFnoMOhKIRJzEJSIioi9XsXsnEnh/9nVez+TUBJFIlOV8TyIiIqIvSbFMIomIiIioaPGZLBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGpjUkkEREREamNSSQRERERqY1JJBERERGp7X8E27alTje0PQAAAABJRU5ErkJggg=="
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-B\n",
|
||||
"# Dal - yaprak grafiği\n",
|
||||
"import stemgraphic\n",
|
||||
"stemgraphic.stem_graphic(veri, asc=False)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Çarpıklık Katsayısı : 0.24165031687153363\n",
|
||||
"Çarpıklık Yönü : Sağ\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-D\n",
|
||||
"# Çarpıklık\n",
|
||||
"from scipy.stats import skew\n",
|
||||
"sk = skew(veri)\n",
|
||||
"if sk > 0:\n",
|
||||
" yon = \"Sağ\"\n",
|
||||
"elif sk < 0:\n",
|
||||
" yon = \"Sol\"\n",
|
||||
"else:\n",
|
||||
" yon = \"Simetrik\"\n",
|
||||
"pprint(\"Çarpıklık Katsayısı\", sk)\n",
|
||||
"pprint(\"Çarpıklık Yönü\", yon)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Frekans 0\n",
|
||||
"0 \n",
|
||||
"[10, 24) 6\n",
|
||||
"[24, 38) 6\n",
|
||||
"[38, 52) 6\n",
|
||||
"[52, 66) 5\n",
|
||||
"[66, 80) 6\n",
|
||||
"[80, 94) 1\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": " Frekans 0\n0 \n[10, 24) 6\n[24, 38) 6\n[38, 52) 6\n[52, 66) 5\n[66, 80) 6\n[80, 94) 1",
|
||||
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Frekans 0</th>\n </tr>\n <tr>\n <th>0</th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>[10, 24)</th>\n <td>6</td>\n </tr>\n <tr>\n <th>[24, 38)</th>\n <td>6</td>\n </tr>\n <tr>\n <th>[38, 52)</th>\n <td>6</td>\n </tr>\n <tr>\n <th>[52, 66)</th>\n <td>5</td>\n </tr>\n <tr>\n <th>[66, 80)</th>\n <td>6</td>\n </tr>\n <tr>\n <th>[80, 94)</th>\n <td>1</td>\n </tr>\n </tbody>\n</table>\n</div>"
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-F\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"w = 14\n",
|
||||
"binEdges = [int(x) for x in range(min(veri), max(veri)+w, w)]\n",
|
||||
"\n",
|
||||
"df = pd.DataFrame(veri)\n",
|
||||
"res = df.apply(lambda x: pd.cut(x, bins=binEdges, right=False).value_counts()).sort_index().add_prefix('Frekans ')\n",
|
||||
"print(res)\n",
|
||||
"#res"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "(array([6., 6., 6., 5., 6., 1.]),\n array([10., 24., 38., 52., 66., 80., 94.]),\n <BarContainer object of 6 artists>)"
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAXh0lEQVR4nO3df2xV9f348VelcAvaVizyS1rH5iYi4hSUMNymk2mIGn8sZjOwEbeYqHWCbE67RZkxWnRxcW4G0WzyhyJqNqaSqGE66scoWkrYZPJBmE47BZlOewH1Suj5/LGv97sqKBffl/bi45GchHt6bs8r913aZ+697anKsiwLAIAE9uvtAQCAfYewAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZKr39gm7u7vjtddei9ra2qiqqtrbpwcA9kCWZbFly5YYOXJk7Lffrp+X2Oth8dprr0VjY+PePi0AkEBnZ2eMGjVqlx/f62FRW1sbEf8ZrK6ubm+fHgDYA/l8PhobG4s/x3dlr4fFBy9/1NXVCQsAqDCf9DYGb94EAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDIlh8Wrr74aM2bMiIaGhhg4cGAcddRRsXLlynLMBgBUmJKuFfLWW2/FlClT4qSTToqHH344Dj744Fi/fn0MHjy4XPMBABWkpLC44YYborGxMe68887ivtGjRycfCgCoTCWFxYMPPhinnnpqnHvuudHW1haHHHJIXHzxxXHBBRfs8j6FQiEKhULxdj6f3/NpP8Err7wSb7zxRtk+/76kUChELpfr7TEqgseqNEOGDImmpqbeHqMi+J61+3xdVZCsBLlcLsvlcllLS0u2atWqbMGCBVlNTU22cOHCXd5n7ty5WUR8ZOvq6irl1J/o5ZdfzmoGDtrpuWw72ar26/0ZKmXzWJW01QwclL388stJ/3/vi3zP8nVVabq6urKIT/75XZVlWRa7acCAATFx4sR46qmnivsuvfTSaG9vj6effnqn99nZMxaNjY3R1dUVdXV1u3vqT7Rq1aqYMGFCNJz+o+jf0Jjs8+6L3n1xZXT9z10eq93gsSrN9jc7482lN0VHR0cce+yxvT1On+Z71u7zddU35PP5qK+v/8Sf3yW9FDJixIgYO3Zsj31HHHFE/P73v9/lfXK53F59Grl/Q2Pkhh+2185Xiba/2RkRHqvd4bGi3Hxtsa8p6ddNp0yZEuvWreux74UXXohDDz006VAAQGUqKSwuu+yyWLFiRVx//fWxYcOGWLRoUdx+++3R3NxcrvkAgApSUlgcd9xxsWTJkrjnnnti3Lhxce2118bNN98c06dPL9d8AEAFKek9FhERp59+epx++unlmAUAqHCuFQIAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACCZksLi5z//eVRVVfXYxowZU67ZAIAKU13qHY488sj405/+9P8/QXXJnwIA2EeVXAXV1dUxfPjwcswCAFS4ksNi/fr1MXLkyKipqYnJkydHa2trNDU17fL4QqEQhUKheDufz+/ZpEDFWLt2bW+P0Od5jNhXlRQWkyZNioULF8bhhx8eGzdujGuuuSa++tWvxpo1a6K2tnan92ltbY1rrrkmybBA37Zj61sRVVUxY8aM3h4F6CUlhcW0adOK/x4/fnxMmjQpDj300LjvvvviBz/4wU7v09LSEnPmzCnezufz0djYuIfjAn1Zd2FrRJZFw+k/iv4N/p9/nHdfXBld/3NXb48ByX2qd14eeOCB8aUvfSk2bNiwy2NyuVzkcrlPcxqgwvRvaIzc8MN6e4w+bfubnb09ApTFp/o7Flu3bo2///3vMWLEiFTzAAAVrKSw+PGPfxxtbW3xj3/8I5566qk4++yzo1+/fnHeeeeVaz4AoIKU9FLIP//5zzjvvPPizTffjIMPPjhOOOGEWLFiRRx88MHlmg8AqCAlhcXixYvLNQcAsA9wrRAAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASOZThcW8efOiqqoqZs+enWgcAKCS7XFYtLe3x4IFC2L8+PEp5wEAKtgehcXWrVtj+vTpcccdd8TgwYNTzwQAVKg9Covm5uY47bTTYurUqannAQAqWHWpd1i8eHGsWrUq2tvbd+v4QqEQhUKheDufz5d6SgCgQpT0jEVnZ2fMmjUr7r777qipqdmt+7S2tkZ9fX1xa2xs3KNBAYC+r6Sw6OjoiM2bN8exxx4b1dXVUV1dHW1tbXHLLbdEdXV17Nix4yP3aWlpia6uruLW2dmZbHgAoG8p6aWQk08+OZ577rke+84///wYM2ZMXHHFFdGvX7+P3CeXy0Uul/t0UwIAFaGksKitrY1x48b12Lf//vtHQ0PDR/YDAJ89/vImAJBMyb8V8mHLly9PMAYAsC/wjAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkSgqL+fPnx/jx46Ouri7q6upi8uTJ8fDDD5drNgCgwpQUFqNGjYp58+ZFR0dHrFy5Mr7xjW/EmWeeGX/729/KNR8AUEGqSzn4jDPO6HH7uuuui/nz58eKFSviyCOPTDoYAFB5SgqL/7Zjx464//77Y9u2bTF58uRdHlcoFKJQKBRv5/P5PT0lANDHlfzmzeeeey4OOOCAyOVyceGFF8aSJUti7Nixuzy+tbU16uvri1tjY+OnGhgA6LtKDovDDz88Vq9eHc8880xcdNFFMXPmzHj++ed3eXxLS0t0dXUVt87Ozk81MADQd5X8UsiAAQPisMMOi4iICRMmRHt7e/zqV7+KBQsW7PT4XC4XuVzu000JAFSET/13LLq7u3u8hwIA+Owq6RmLlpaWmDZtWjQ1NcWWLVti0aJFsXz58nj00UfLNR8AUEFKCovNmzfH9773vdi4cWPU19fH+PHj49FHH41vfvOb5ZoPAKggJYXFb3/723LNAQDsA1wrBABIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDIlhUVra2scd9xxUVtbG0OHDo2zzjor1q1bV67ZAIAKU1JYtLW1RXNzc6xYsSKWLVsW27dvj1NOOSW2bdtWrvkAgApSXcrBjzzySI/bCxcujKFDh0ZHR0d87WtfSzoYAFB5SgqLD+vq6oqIiIMOOmiXxxQKhSgUCsXb+Xz+05wSAOjD9vjNm93d3TF79uyYMmVKjBs3bpfHtba2Rn19fXFrbGzc01MCAH3cHodFc3NzrFmzJhYvXvyxx7W0tERXV1dx6+zs3NNTAgB93B69FHLJJZfE0qVL44knnohRo0Z97LG5XC5yudweDQcAVJaSwiLLsvjhD38YS5YsieXLl8fo0aPLNRcAUIFKCovm5uZYtGhRPPDAA1FbWxubNm2KiIj6+voYOHBgWQYEACpHSe+xmD9/fnR1dcWJJ54YI0aMKG733ntvueYDACpIyS+FAADsimuFAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAyJYfFE088EWeccUaMHDkyqqqq4o9//GMZxgIAKlHJYbFt27Y4+uij49Zbby3HPABABasu9Q7Tpk2LadOmlWMWAKDCeY8FAJBMyc9YlKpQKEShUCjezufz5T4lAPugtWvX9vYIFWHIkCHR1NTUa+cve1i0trbGNddcU+7TALCP2rH1rYiqqpgxY0Zvj1IRagYOinX/u7bX4qLsYdHS0hJz5swp3s7n89HY2Fju0wKwj+gubI3Ismg4/UfRv8HPj4+z/c3OeHPpTfHGG2/su2GRy+Uil8uV+zQA7OP6NzRGbvhhvT0Gn6DksNi6dWts2LChePull16K1atXx0EHHdSrr+kAAL2v5LBYuXJlnHTSScXbH7zMMXPmzFi4cGGywQCAylNyWJx44omRZVk5ZgEAKpy/YwEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACAZYQEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkhEWAEAywgIASEZYAADJCAsAIBlhAQAkIywAgGSEBQCQjLAAAJIRFgBAMsICAEhGWAAAyQgLACCZPQqLW2+9NT73uc9FTU1NTJo0KZ599tnUcwEAFajksLj33ntjzpw5MXfu3Fi1alUcffTRceqpp8bmzZvLMR8AUEFKDotf/vKXccEFF8T5558fY8eOjdtuuy0GDRoUv/vd78oxHwBQQapLOfj999+Pjo6OaGlpKe7bb7/9YurUqfH000/v9D6FQiEKhULxdldXV0RE5PP5PZl3l7Zu3fqf823aEN3vv5f0c+9rtr/ZGREeq93hsSqNx2v3eax2n8dq923/9z8j4j8/E1P/nP3g82VZ9vEHZiV49dVXs4jInnrqqR77L7/88uz444/f6X3mzp2bRYTNZrPZbLZ9YOvs7PzYVijpGYs90dLSEnPmzCne7u7ujn//+9/R0NAQVVVV5T59xcvn89HY2BidnZ1RV1fX2+PwMaxVZbFelcNa9Q1ZlsWWLVti5MiRH3tcSWExZMiQ6NevX7z++us99r/++usxfPjwnd4nl8tFLpfrse/AAw8s5bRERF1dnf9QFcJaVRbrVTmsVe+rr6//xGNKevPmgAEDYsKECfHYY48V93V3d8djjz0WkydPLn1CAGCfUvJLIXPmzImZM2fGxIkT4/jjj4+bb745tm3bFueff3455gMAKkjJYfHtb387/vWvf8XVV18dmzZtii9/+cvxyCOPxLBhw8ox32deLpeLuXPnfuTlJPoea1VZrFflsFaVpSr7xN8bAQDYPa4VAgAkIywAgGSEBQCQjLAAAJIRFn1Aa2trHHfccVFbWxtDhw6Ns846K9atW9fjmPfeey+am5ujoaEhDjjggPjWt771kT9Uxt43b968qKqqitmzZxf3Wau+5dVXX40ZM2ZEQ0NDDBw4MI466qhYuXJl8eNZlsXVV18dI0aMiIEDB8bUqVNj/fr1vTjxZ9OOHTviqquuitGjR8fAgQPjC1/4Qlx77bU9rkthrSqDsOgD2traorm5OVasWBHLli2L7du3xymnnBLbtm0rHnPZZZfFQw89FPfff3+0tbXFa6+9Fuecc04vTk17e3ssWLAgxo8f32O/teo73nrrrZgyZUr0798/Hn744Xj++efjpptuisGDBxePufHGG+OWW26J2267LZ555pnYf//949RTT4333nOxq73phhtuiPnz58dvfvObWLt2bdxwww1x4403xq9//eviMdaqQpRyETL2js2bN2cRkbW1tWVZlmVvv/121r9//+z+++8vHrN27dosIrKnn366t8b8TNuyZUv2xS9+MVu2bFn29a9/PZs1a1aWZdaqr7niiiuyE044YZcf7+7uzoYPH5794he/KO57++23s1wul91zzz17Y0T+n9NOOy37/ve/32PfOeeck02fPj3LMmtVSTxj0Qd9cGn5gw46KCIiOjo6Yvv27TF16tTiMWPGjImmpqZdXq6e8mpubo7TTjutx5pEWKu+5sEHH4yJEyfGueeeG0OHDo1jjjkm7rjjjuLHX3rppdi0aVOP9aqvr49JkyZZr73sK1/5Sjz22GPxwgsvRETEX/7yl3jyySdj2rRpEWGtKknZr25Kabq7u2P27NkxZcqUGDduXEREbNq0KQYMGPCRi7cNGzYsNm3a1AtTfrYtXrw4Vq1aFe3t7R/5mLXqW1588cWYP39+zJkzJ376059Ge3t7XHrppTFgwICYOXNmcU0+/JeDrdfed+WVV0Y+n48xY8ZEv379YseOHXHdddfF9OnTIyKsVQURFn1Mc3NzrFmzJp588sneHoWd6OzsjFmzZsWyZcuipqamt8fhE3R3d8fEiRPj+uuvj4iIY445JtasWRO33XZbzJw5s5en47/dd999cffdd8eiRYviyCOPjNWrV8fs2bNj5MiR1qrCeCmkD7nkkkti6dKl8ec//zlGjRpV3D98+PB4//334+233+5x/Mddrp7y6OjoiM2bN8exxx4b1dXVUV1dHW1tbXHLLbdEdXV1DBs2zFr1ISNGjIixY8f22HfEEUfEK6+8EhFRXJMP/9aO9dr7Lr/88rjyyivjO9/5Thx11FHx3e9+Ny677LJobW2NCGtVSYRFH5BlWVxyySWxZMmSePzxx2P06NE9Pj5hwoTo379/j8vVr1u3Ll555RWXq9/LTj755Hjuuedi9erVxW3ixIkxffr04r+tVd8xZcqUj/zq9gsvvBCHHnpoRESMHj06hg8f3mO98vl8PPPMM9ZrL3vnnXdiv/16/kjq169fdHd3R4S1qii9/e5Rsuyiiy7K6uvrs+XLl2cbN24sbu+8807xmAsvvDBramrKHn/88WzlypXZ5MmTs8mTJ/fi1Hzgv38rJMusVV/y7LPPZtXV1dl1112XrV+/Prv77ruzQYMGZXfddVfxmHnz5mUHHnhg9sADD2R//etfszPPPDMbPXp09u677/bi5J89M2fOzA455JBs6dKl2UsvvZT94Q9/yIYMGZL95Cc/KR5jrSqDsOgDImKn25133lk85t13380uvvjibPDgwdmgQYOys88+O9u4cWPvDU3Rh8PCWvUtDz30UDZu3Lgsl8tlY8aMyW6//fYeH+/u7s6uuuqqbNiwYVkul8tOPvnkbN26db007WdXPp/PZs2alTU1NWU1NTXZ5z//+exnP/tZVigUisdYq8rgsukAQDLeYwEAJCMsAIBkhAUAkIywAACSERYAQDLCAgBIRlgAAMkICwAgGWEBACQjLACAZIQFAJCMsAAAkvk/WxU2brthU2cAAAAASUVORK5CYII="
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-G / Histogram\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"plt.hist(veri, bins=binEdges, edgecolor='black')"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "[<matplotlib.lines.Line2D at 0x7fd6f683d990>]"
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": "<Figure size 640x480 with 1 Axes>",
|
||||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/O0lEQVR4nO3deVxU5eIG8GdYZtgH2UEBARfEXRQkbdVS85qmpZkQKNbNsDTrVraZbVr9bmX3lnaTcMGlrNS0q2aadO0aCIqIJoqQoGwqMsM2A8y8vz9MrqSYwDBnluf7+cynOOfM+JxpYh7POe95ZUIIASIiIiIjsZE6ABEREVkXlg8iIiIyKpYPIiIiMiqWDyIiIjIqlg8iIiIyKpYPIiIiMiqWDyIiIjIqlg8iIiIyKjupA/yRXq9HSUkJXF1dIZPJpI5DREREN0EIgerqagQEBMDG5sbHNkyufJSUlCAwMFDqGERERNQOxcXF6Nat2w23Mbny4erqCuByeDc3N4nTEBER0c1Qq9UIDAxs/h6/EZMrH1dOtbi5ubF8EBERmZmbuWSCF5wSERGRUbF8EBERkVGxfBAREZFRsXwQERGRUbF8EBERkVGxfBAREZFRsXwQERGRUbF8EBERkVGZ3E3GiIiIqHPo9AIZhZWoqNbAx9UBUSEesLUx/jxqbTrysXz5cgwYMKD57qMxMTHYsWNH83qNRoOkpCR4enrCxcUFU6ZMQXl5ucFDExERUdvszC3FyHf2Yvpnv2DexmxM/+wXjHxnL3bmlho9S5vKR7du3bB06VJkZWUhMzMTd911FyZOnIhjx44BAJ5++mls27YNmzZtQlpaGkpKSjB58uROCU5EREQ3Z2duKeakHkKpStNieZlKgzmph4xeQGRCCNGRF/Dw8MB7772HBx54AN7e3li/fj0eeOABAMCJEyfQp08fHDhwAMOHD7+p11Or1VAqlVCpVJzbhYiIqIN0eoGR7+y9pnhcIQPgp3TA/ufv6tApmLZ8f7f7glOdToeNGzeitrYWMTExyMrKQmNjI0aPHt28TXh4OIKCgnDgwIFWX0er1UKtVrd4EBERkWFkFFa2WjwAQAAoVWmQUVhptExtvuD06NGjiImJgUajgYuLCzZv3oyIiAhkZ2dDLpfD3d29xfa+vr4oKytr9fWWLFmCxYsXtzk4ERER/Y9OL3DuUj1On6+56lGLX0tUN/X8iurWC4qhtbl89O7dG9nZ2VCpVPjqq68QHx+PtLS0dgdYuHAhFixY0PyzWq1GYGBgu1+PiIjIktVom1BwpVxU1KLgwuV/Fl6sRUOTvt2v6+PqYMCUN9bm8iGXy9GjRw8AQGRkJA4ePIhly5Zh2rRpaGhoQFVVVYujH+Xl5fDz82v19RQKBRQKRduTExERWSi9XqBUrcHpiprfi0Zt89GMcrW21efJ7WwQ6uWMMG8XhHk7I9TbBd09nfHX1ExUqLW43kWeV675iArx6LT9+aMO3+dDr9dDq9UiMjIS9vb22LNnD6ZMmQIAyMvLQ1FREWJiYjoclIiIyNLUN+hQeKG2xWmSgvM1KDhfi/pGXavP83JRIMzbGWE+LpfLho8Leni7IMDd8boXjS6+ry/mpB6CDGhRQK5suWhChFHv99Gm8rFw4UKMGzcOQUFBqK6uxvr167Fv3z7s2rULSqUSiYmJWLBgATw8PODm5oYnn3wSMTExNz3ShYiIyNIIIXC+Wov8q8rF6fO1OF1Rg3NV9a0+z85Ghu5ezs3l4uqjGUpH+zZlGNvPH8tjh2DxtuMtLj71Uzpg0YQIjO3n3+79a482lY+Kigo88sgjKC0thVKpxIABA7Br1y7cfffdAIAPPvgANjY2mDJlCrRaLcaMGYNPPvmkU4ITERGZEm2TDmcu1rUoF6d/P4pRrW1q9XnuTvbNxSLM2wWhv/97oIcT7G0NNwvK2H7+uDvCzyTucNrh+3wYGu/zQUREpqyytuH3iz3/Vy5On69BUWUd9K18o9rIgCAPp9/Lxe/XZPx+NMPDWW7cHegkbfn+5twuREREf9Ck06Oosq75Qs+rL/qsqmts9XmuCjuE+rggrPlUyeWiEeTpBIWdrRH3wLSxfBARkdVS1Te2OHpx5WhGUWUdGnXXP4whkwEBSscW5SLU2xk9vF3g7aqATGb80xjmhuWDiIgk15mzrer0AiVV9Zcv+KxoedHnhZrWh6062tv+7xTJVadLQryc4SjnUYyOYPkgIiJJ7cwtvWYUhn87RmHUapuaj2BcfZqk4MKNb77l5+aAMB9nhHq5NA9fDfN2gZ+bA2wkuBjTGrB8EBGRZK7MtvrHExxXZltdHjukRQERQqBUpfnfaZLz/7vo80bzl8jtbBDi6Ywwn5ZHMkK9XeCi4FehsfEdJyIiSej0Aou3Hb/uXTevLHvhm6P4tbQav12sbS4ZdQ03uvmW/Pehqv+7HiPM2wVdu1z/5lskDZYPIiKSxJ/NtgoAVXWNWLbnVItldjYyBHs6tbgnRpiPC8K8XKB0atvNt0gaLB9ERCSJm51FNTrEA3eG+zSfKgky8M23yPhYPoiISBI3O4vq/NG9EBPm2clpyJhYHYmISBKuDna40WUYMlwe9WLM2VbJOFg+iIjI6LLOVOLhz35p9XbkUs22SsbB8kFEREaVdvI8YldmQK1pQmRwF/x96kD4K1uegvFTOlwzzJYsB6/5ICIio/kupxTzvziMRp3A7b28sTx2CJzkdpg0qKtJzLZKxsHyQURERrExowgvbj4KvQDGD/DHB1MHQW53+QC8rY2MF5VaEZYPIiLqdJ+mncaSHScAANOjgvDmpH48smHFWD6IiKjTCCHw7q48LN93GgDw+O1heH5sb878auVYPoiIqFPo9AKvbs3FuvQiAMDzY8Mx544wiVORKWD5ICIig2to0uOZTUew7UgJZDLgrUn98XB0kNSxyESwfBARkUHVN+gwZ10W9uWdh72tDO9PHYQJAwOkjkUmhOWDiIgMRlXfiNmrD+Lgb5fgYG+DFbGRuKO3j9SxyMSwfBARkUGcr9Yi/vMMHC9Vw9XBDikJwzC0O2+NTtdi+SAiog47V1WP2JXpKLxQCy8XOdbMikZEgJvUschEsXwQEVGH5FfUIC45HaUqDbq6OyJ1djRCvJyljkUmjOWDiIja7ehZFeJTMlBZ24Awb2ekzo6Gv9JR6lhk4lg+iIioXX4puIjZqzNRo21C/65KrJ4VBQ9nudSxyAywfBARUZvt+bUcT6w7BG2THtEhHlgZPxSuDvZSxyIzwfJBRERtsuXwOTyz6Qh0eoHRfXzwz4eHwMHeVupYZEZYPoiI6KatOfAbXt16DABw/+CuePeBAbC3tZE4FZkblg8iIvpTQgj8c28+/r77JAAg4ZbuePUvEbDhzLTUDiwfRER0Q0IIvPXdr1i5vxAAMG9UT8wf3ZMz01K7sXwQEVGrmnR6LPzmKDZlnQUAvPqXCMwaGSJxKjJ3LB9ERHRd2iYd5m3Ixs5jZbCRAe9MGYAHhwZKHYssAMsHERFdo1bbhMfWZuLn/IuQ29rgHw8Pxpi+flLHIgvB8kFERC1U1TUgIeUgsour4CS3xWePDMWIHl5SxyILwvJBRETNytUaxCWn42R5Ddyd7LFqZhQGBbpLHYssDMsHEREBAIou1iE2OR1FlXXwdVNgbWI0evm6Sh2LLBDLBxERIa+sGnHJ6aio1iLIwwnrZkcj0MNJ6lhkoVg+iIis3KGiS5iZchCq+kaE+7lizawo+Lg5SB2LLBjLBxGRFdt/6gIeW5uJugYdBge5IyVhGNydODMtdS6WDyIiK7UztxRPbchGg06PW3t64dO4SDjJ+bVAnY+fMiIiK/RlZjFe+DoHegHc298PH0wbBIUdZ6Yl42D5ICKyMiv/U4A3v/sVADBtaCDentwftpwgjoyI5YOIyEoIIfD+7pP4x958AMBjt4Vi4bhwThBHRsfyQURkBfR6gde2HcOaA2cAAH8b0xtP3BHG4kGSYPkgIrJwjTo9nt10BFuzSyCTAa9P7Ie44cFSxyIrxvJBRGTBNI06PLHuEPaeqICdjQx/nzoQEwd1lToWWTmWDyIiC1WtaUTi6kxkFFZCYWeD5bFDcFe4r9SxiFg+iIgs0cUaLeJTMpB7Tg1XhR2SE4YhKsRD6lhEAFg+iIgsTklVPWKT01FwvhaeznKsnhWFfl2VUsciasbyQURkQQrO1yB2ZTpKVBoEKB2wdnY0wrxdpI5F1ALLBxGRhcg9p0L85xm4WNuAUC9nrJ0dja7ujlLHIroGywcRkQXIKKxE4qqDqNY2oW+AG1bPioKXi0LqWETXxfJBRGTmfjxRgcdTs6Bt0iMqxAMr44fCzcFe6lhErWL5ICIyY98eKcGCL7LRpBe4K9wHn8wYAgd7ThBHpo3lg4jITKX+cgavbM2FEMDEQQH4vwcHwt7WRupYRH+K5YOIyMwIIfDJvtN4b1ceACBueDAW39cXNpyZlswEywcRkRkRQmDpjhP49KcCAMDcO3vgmXt6cYI4MissH0REZkKnF3jxm6P4IrMYAPDSvX3w6G2hEqciajuWDyIiM6Bt0uHpL7Lx76NlsJEBSycPwNRhgVLHImqXNl2ZtGTJEgwbNgyurq7w8fHBpEmTkJeX12KbO+64AzKZrMXj8ccfN2hoIiJrUtfQhNmrM/Hvo2WQ29rg44eHsHiQWWtT+UhLS0NSUhJ++eUX7N69G42NjbjnnntQW1vbYrtHH30UpaWlzY93333XoKGJiKyFqq4RsSvT8Z9TF+Akt0VywlCM6+8vdSyiDmnTaZedO3e2+HnVqlXw8fFBVlYWbrvttublTk5O8PPzM0xCIiIrVVGtwSPJGThRVg2loz1SZg7DkKAuUsci6rAODQhXqVQAAA+PltM0r1u3Dl5eXujXrx8WLlyIurq6Vl9Dq9VCrVa3eBARWbviyjo8uOIATpRVw9tVgS/+OpzFgyxGuy841ev1mD9/PkaMGIF+/fo1L3/44YcRHByMgIAA5OTk4Pnnn0deXh6++eab677OkiVLsHjx4vbGICKyOCfLqxGXnI5ytRaBHo5ITYxGsKez1LGIDEYmhBDteeKcOXOwY8cO7N+/H926dWt1u71792LUqFHIz89HWFjYNeu1Wi20Wm3zz2q1GoGBgVCpVHBzc2tPNCIis5VdXIWElAxU1TWil68L1iZGw9fNQepYRH9KrVZDqVTe1Pd3u458zJ07F9u3b8dPP/10w+IBANHR0QDQavlQKBRQKDjzIhHRf/Mv4NE1maht0GFgoDtWJQxDF2e51LGIDK5N5UMIgSeffBKbN2/Gvn37EBIS8qfPyc7OBgD4+/PqbCKi1nx/rAxzNxxGQ5MeI3p44l9xQ+Gs4K2YyDK16ZOdlJSE9evXY+vWrXB1dUVZWRkAQKlUwtHREadPn8b69etx7733wtPTEzk5OXj66adx2223YcCAAZ2yA0RE5u7rrLN47usc6PQCY/r64qPpg6Gw48y0ZLnadM1Ha3MHpKSkICEhAcXFxYiNjUVubi5qa2sRGBiI+++/Hy+//PJNX7/RlnNGRETm7vP9hXh9+3EAwAOR3bB0cn/YcWZaMkOdds3Hn/WUwMBApKWlteUliYiskhACH/5wCsv2nAIAJI4MwUv39uHMtGQVeEKRiMjI9HqB17cfx6r//gYAeObuXph7Vw/OTEtWg+WDiMiImnR6PPdVDr45fA4AsPi+voi/pbu0oYiMjOWDiMhINI06zF1/GD/8Wg5bGxn+/uBATBrcVepYREbH8kFEZAQ12iY8ujoTBwouQmF3eWba0RG+UscikgTLBxFRJ6usbUBCSgZyzqrgorDDyvihGB7qKXUsIsmwfBARdaJSVT3ikjOQX1GDLk72WDMrGv27KaWORSQplg8iok5SeKEWsSvTca6qHv5KB6xNjEIPH1epYxFJjuWDiKgTHC9R45HPM3ChRosQL2esTYxCty5OUsciMgksH0REBpb5WyVmrjqIak0TIvzdsHpWFLxdOYEm0RUsH0REBpR28jz+ujYTmkY9hnXvgpXxw6B0tJc6FpFJYfkgIjKQ7TklePqLbDTqBO7o7Y3lMyLhKOcEcUR/xPJBRGQAGzKK8OLmoxAC+MsAf7w/dRDkdpwgjuh6WD6IiDpoRdppLN1xAgDwcHQQ3pjYD7acII6oVSwfRETtJITAOzvzsCLtNABgzh1heG5Mb04QR/QnWD6IiNpBpxd4ZWsu1qcXAQBeGBeOx28PkzgVkXlg+SAiaqOGJj0WfJmN7TmlkMmAt+/vj+lRQVLHIjIbLB9ERK3Q6QUyCitRUa2Bj6sDokI80NCkx5x1WdiXdx72tjJ8OG0wxg/wlzoqkVlh+SAiuo6duaVYvO04SlWa5mW+bgq4KOxw+nwtHO1tsSIuErf38pYwJZF5YvkgIvqDnbmlmJN6COIPy8vVWpRDCwd7G6TOjkJksIck+YjMHQehExFdRacXWLzt+DXF42ouCnsMCuxitExEloblg4joKhmFlS1OtVzPhRotMgorjZSIyPKwfBARXaWi+sbFo63bEdG1WD6IiK7i4+pg0O2I6FosH0REVwnycIK9bet3KJUB8FdeHnZLRO3D8kFE9Lv/nr6AiR/vR6Pu+pebXqkkiyZEcO4Wog5g+SAiqyeEwIq004hdmY4LNQ0I93PF6/f1hb+y5akVP6UDlscOwdh+vKkYUUfwPh9EZNXUmkY8++URfH+8HAAweUhXvDWpPxzltpgxPPiaO5zyiAdRx7F8EJHVOlGmxpzUQyi8UAu5rQ1enRCBGdFBzbPS2trIEBPmKXFKIsvD8kFEVmnL4XNY+M1R1DfqEKB0wCexkRgU6C51LCKrwPJBRFaloUmPN787jjUHzgAAbu3phWUPDYaHs1ziZETWg+WDiKxGSVU9nlh3CNnFVQCAp+7qgXmje/E6DiIjY/kgIqvwc/4FPLnhMCprG+DmYIcPHxqEu8J9pY5FZJVYPojIoun1AsvTTuPv3+dBL4AIfzesiI1EkKeT1NGIrBbLBxFZLFV9I5758gh++PXyMNoHI7vhjUn94GBvK3EyIuvG8kFEFul4iRpz1mXhzMU6yO1s8Pp9ffFQVJDUsYgILB9EZIG+yjqLlzYfhbZJj25dHLF8RiT6d1NKHYuIfsfyQUQWQ9ukw+Jtx7E+vQgAcHsvbyx7aBDcnTiMlsiUsHwQkUU4V1WPJ1KzcOSsCjIZMG9UTzx1V0/YcBgtkclh+SAis/fTyfOYt/EwLtU1wt3JHh9OG4Q7evtIHYuIWsHyQURmS68X+OeP+fjgh5MQAujfVYlPZgxBoAeH0RKZMpYPIjJLVXUNePqLbPyYdx4AMD0qCIsmRHAYLZEZYPkgIrOTe06Fx1OzcPZSPRR2NnhjUj9MHRoodSwiukksH0RkVr48WIyXt+aioUmPQI/Lw2j7deUwWiJzwvJBRGZB06jDa98ew8aDxQCAu8J98MHUQVA62UucjIjaiuWDiExecWUd5qzLQu45NWQy4Jm7e+GJO3pwGC2RmWL5ICKT9mNeBeZvzIaqvhFdnOzx0fTBuLWnt9SxiKgDWD6IyCTp9ALL9pzCP/aeghDAwG5KfBIbia7ujlJHI6IOYvkgIpNzqbYB877Ixk8nLw+jjR0ehFf+EgGFHYfRElkClg8iMik5Z6swJ/UQzlXVw8HeBm/f3x+Th3STOhYRGRDLBxGZBCEENmQU47Vvj6FBp0d3Tycsj41EH383qaMRkYGxfBCR5DSNOry8JRdfZZ0FANwd4Yv/e3AglI4cRktkiVg+iEhSZy7W4vHUQ/i1VA0bGfDsmN54/LYwDqMlsmAsH0QkmT2/lmP+F9mo1jTB01mOj6YPxogeXlLHIqJOxvJBREan0wt8sPsk/vljPgBgcJA7PpkxBP5KDqMlsgYsH0RkVBdrtJi3MRv78y8AABJu6Y4X7+0DuZ2NxMmIyFhYPojIaA4XXULSukMoUWngaG+LpVP6Y+KgrlLHIiIjY/kgok4nhEDqL2fw+vbjaNQJhHo5Y3lsJHr7uUodjYgkwPJBRJ2qvkGHFzcfxebD5wAAY/v64b0HB8DVgcNoiawVywcRdZrCC7WYk5qFE2XVsLWR4fmxvfHoraGQyTiMlsiatekKryVLlmDYsGFwdXWFj48PJk2ahLy8vBbbaDQaJCUlwdPTEy4uLpgyZQrKy8sNGpqITN/3x8pw3z/240RZNbxcFFg3OxqP3RbG4kFEbSsfaWlpSEpKwi+//ILdu3ejsbER99xzD2pra5u3efrpp7Ft2zZs2rQJaWlpKCkpweTJkw0enIhMU5NOj6U7TuCxtVmo1jZhaHAXfPfUSAwP9ZQ6GhGZCJkQQrT3yefPn4ePjw/S0tJw2223QaVSwdvbG+vXr8cDDzwAADhx4gT69OmDAwcOYPjw4X/6mmq1GkqlEiqVCm5unNOByJycr9biqQ2HcaDgIgBg1ogQLLw3HPa2HEZLZOna8v3doWs+VCoVAMDDwwMAkJWVhcbGRowePbp5m/DwcAQFBbVaPrRaLbRabYvwRGR+ss5cwhPrslCu1sJJbot3pgzAhIEBUsciIhPU7r+O6PV6zJ8/HyNGjEC/fv0AAGVlZZDL5XB3d2+xra+vL8rKyq77OkuWLIFSqWx+BAYGtjcSEUlACIFVPxdi2qcHUK7WIszbGVuTRrB4EFGr2l0+kpKSkJubi40bN3YowMKFC6FSqZofxcXFHXo9IjKeuoYmzNuYjde2HUeTXmB8f39snTsSPX15/w4ial27TrvMnTsX27dvx08//YRu3bo1L/fz80NDQwOqqqpaHP0oLy+Hn5/fdV9LoVBAoVC0JwYRSej0+RrMSc3CyfIa2NnIsPDePpg1ojtHsxDRn2rTkQ8hBObOnYvNmzdj7969CAkJabE+MjIS9vb22LNnT/OyvLw8FBUVISYmxjCJiUhyO46WYuI/f8bJ8hp4uyqw4bHhSBwZwuJBRDelTUc+kpKSsH79emzduhWurq7N13EolUo4OjpCqVQiMTERCxYsgIeHB9zc3PDkk08iJibmpka6EJFpa9Lp8e6uPPzrpwIAQFSIB/758GD4uDpInIyIzEmbhtq29realJQUJCQkALh8k7FnnnkGGzZsgFarxZgxY/DJJ5+0etrljzjUlsg0VVRrMHf9YWQUVgIAHrstFH8b05vDaIkIQNu+vzt0n4/OwPJBZHoO/laJpHWHUFGthYvCDu89MADj+vtLHYuITIjR7vNBRJZNCIHk/YVYsuMEdHqBnj4uWBEXiTBvF6mjEZEZY/kgouuq0Tbh+a9z8F1OKQDgvoEBWDK5P5wV/LVBRB3D3yJEdI38imr8dW0WTp+vhZ2NDC+P74P4WziMlogMg+WDiFrYnlOC57/KQW2DDr5uCnwyYwgigz2kjkVEFoTlg4gAAI06PZb8+wQ+/7kQABAT6ol/PDwYXi68CSARGRbLBxGhXK1B0rpDyDxzCQDw+O1hePaeXrDjMFoi6gQsH0RW7peCi5i7/jAu1GjhqrDD/00diDF9b+6+PERE7cHyQWSlhBD47D8FeGdnHnR6gd6+rlgRF4kQL2epoxGRhWP5ILJC1ZpGPPdVDnbkXp4i4f7BXfHW/f3gJOevBCLqfPxNQ2RlTpZX4/G1WSi4UAt7WxlendAXsdFBHEZLREbD8kFkRbZmn8MLXx9FfaMO/koHfDJjCAYHdZE6FhFZGZYPIivQ0KTHW98dx+oDZwAAI3t4YdlDg+DJYbREJAGWDyILV6qqR9K6QzhUVAUAmHtnDzx9dy/Y2vA0CxFJg+WDyIL9N/8CntxwGBdrG+DqYIcPpg7C6AhfqWMRkZVj+SCyQEIIrEgrwHu7TkAvgD7+blgROwTBnhxGS0TSY/kgsjBqTSOe+fIIdh8vBwA8ENkNb07qBwd7W4mTERFdxvJBZIZ0eoGMwkpUVGvg4+qAqBAP2NrI8GupGnNSs/DbxTrIbW3w2n19MT0qkMNoiciksHwQmZmduaVYvO04SlWa5mX+SgeM6euLjQeLoWnUo6u7Iz6ZMQQDA92lC0pE1AqWDyIzsjO3FHNSD0H8YXmpSoNV/708jPa2Xt5YNm0QujjLjR+QiOgmsHwQmQmdXmDxtuPXFI+ruSjssPKRoZDbcTZaIjJd/A1FZCYyCitbnGq5nhptE7LOXDJSIiKi9mH5IDITFdU3Lh5t3Y6ISCosH0RmwsfVwaDbERFJheWDyExEhXjA1aH1y7RkuDzqJSrEw3ihiIjageWDyAwIIfD+7jxUa5quu/7KXTwWTYjgnC1EZPJYPohMnF4v8MrWXHz842kAwKRBAfBXtjy14qd0wPLYIRjbz1+KiEREbcKhtkQmrFGnxzNfHsG3R0ogkwFvTuqHGdHBrd7hlIjIHLB8EJmo+gYdnliXhR/zzsPORob3pw3CfQMDAAC2NjLEhHlKnJCIqH1YPohMkFrTiNmrMpHxWyUUdjZYERuJO8N9pI5FRGQQLB9EJuZCjRbxn2fgWIkargo7JCcM4wgWIrIoLB9EJuRcVT3iVqaj4EItPJ3lWD0rCv26KqWORURkUCwfRCbi9PkaxK1MR4lKg67ujlibGIVQbxepYxERGRzLB5EJyD2nwiOfZ6CytgFh3s5YmxiNAHdHqWMREXUKlg8iiaUXXETi6kzUaJvQv6sSq2YOg6eLQupYRESdhuWDSEJ7T5RjTuohaJv0iArxQHL8ULg62Esdi4ioU7F8EElka/Y5PPPlETTpBUaF++DjGUPgYG8rdSwiok7H8kEkgbUHfsOr3x6DEJdvl/7egwNhb8vZDojIOrB8EBmREAIf/5iP//v+JADgkZhgvDahL2x4a3QisiIsH0RGIoTA2//+FZ/9pxAA8NRdPfD03b0gk7F4EJF1YfkgMoImnR4vbj6KLzPPAgBeHt8Hs28NlTgVEZE0WD6IOpm2SYd5G7Kx81gZbGTA0ikDMHVooNSxiIgkw/JB1IlqtU3469os7M+/ALmtDT6aPghj+/lLHYuISFIsH0SdpKquATNXHcThoio4yW3xr7ihGNnTS+pYRESSY/kg6gQVag3ikjOQV14NpaM9Vs0chsFBXaSORURkElg+iAys6GIdYpPTUVRZBx9XBdYmRqO3n6vUsYiITAbLB5EB5ZVVIy45HRXVWgR5OCE1MRpBnk5SxyIiMiksH0QGcrjoEhJSDkJV34jevq5YmxgFHzcHqWMREZkclg8iA9h/6gIeW5uJugYdBge5IyVhGNyd5FLHIiIySSwfRB20M7cUT23IRoNOj5E9vPBpXCScFfxfi4ioNfwNSdQBmzKL8fzXOdALYGxfPyybPggKO85MS0R0IywfRO2UvL8Qb2w/DgB4MLIblkzuDzvOTEtE9KdYPojaSAiBD3afxEd78wEAs0eG4KXxfThBHBHRTWL5IGoDvV5g8bZjWH3gDADg2Xt6IenOHiweRERtwPJBdJMadXr8bdMRbMkugUwGvH5fX8TFdJc6FhGR2WH5ILoJmkYdktYdwp4TFbC1keH9qQMxcVBXqWMREZkllg+iP1GtacTs1ZlIL6yEws4Gn8wYglF9fKWORURktlg+iG7gYo0WCSkHcfScCi4KO6yMH4rhoZ5SxyIiMmssH0StKKmqR1xyOk6fr4WHsxxrZkWhX1el1LGIiMweywfRdRScr0FccgbOVdUjQOmANYnR6OHjInUsIiKL0OY7Iv3000+YMGECAgICIJPJsGXLlhbrExISIJPJWjzGjh1rqLxEne5YiQpTPz2Ac1X1CPVyxqY5t7B4EBEZUJvLR21tLQYOHIiPP/641W3Gjh2L0tLS5seGDRs6FJLIWA7+VomHPv0FF2oa0DfADV8+HoOu7o5SxyIisihtPu0ybtw4jBs37obbKBQK+Pn5tTsUkRR+PFGBOeuyoGnUY1j3LkhOGAY3B3upYxERWZxOmYhi37598PHxQe/evTFnzhxcvHix1W21Wi3UanWLB5GxbTtSgkfXZELTqMcdvb2xZlY0iwcRUScxePkYO3Ys1qxZgz179uCdd95BWloaxo0bB51Od93tlyxZAqVS2fwIDAw0dCSiG1qXfgZPbTyMJr3AhIEB+FfcUDjKOTMtEVFnkQkhRLufLJNh8+bNmDRpUqvbFBQUICwsDD/88ANGjRp1zXqtVgutVtv8s1qtRmBgIFQqFdzc3NobjeimfLIvH+/uzAMAzIgOwusT+8HWhvO0EBG1lVqthlKpvKnv704fahsaGgovLy/k5+dft3woFAooFIrOjkHUghACS3eewKdpBQCApDvD8Ow9vTlBHBGREXR6+Th79iwuXrwIf3//zv6jiG6KTi/w0uaj2HiwGADw4r3heOy2MIlTERFZjzaXj5qaGuTn5zf/XFhYiOzsbHh4eMDDwwOLFy/GlClT4Ofnh9OnT+O5555Djx49MGbMGIMGJ2oPbZMOC744gu+OlsJGBiyZ3B/ThgVJHYuIyKq0uXxkZmbizjvvbP55wYIFAID4+HgsX74cOTk5WL16NaqqqhAQEIB77rkHb7zxBk+tkOTqGprw17VZ+M+pC7C3lWHZQ4Nxb38ekSMiMrYOXXDaGdpywQrRzVLVNWLW6oPIOnMJjva2+DQuErf18pY6FhGRxTCpC06JpFZRrcEjyRk4UVYNNwc7pMyMQmRwF6ljERFZLZYPsmjFlXWIS07Hbxfr4OWiwNrEKPTx5xE1IiIpsXyQxTpVXo3Y5HSUq7Xo1sURqYnR6O7lLHUsIiKrx/JBFulIcRXiUzJQVdeInj4uWJsYDT+lg9SxiIgILB9kgf57+gIeXZ2J2gYdBga6Y1XCMHRxlksdi4iIfsfyQRbl+2NlmLvhMBqa9LglzBP/emQoXBT8mBMRmRL+ViaL8XXWWTz3dQ50eoF7Inzx0fTBcLDnBHFERKaG5YMsQsrPhVi87TgAYMqQbnhnSn/Y2Rp80mYiIjIAlg8ya0IILNtzCh/+cAoAMHNEd7wyPgI2nJmWiMhksXyQ2dLrBV7ffhyr/vsbAGDB3b3w5F09ODMtEZGJY/kgs9Sk0+O5r3PwzaFzAIDXJkQgYUSIxKmIiOhmsHyQ2dE06vDkhsPYfbwctjYy/N+DA3D/4G5SxyIiopvE8kFmpUbbhEdXZ+JAwUXI7Wzw8cNDcHeEr9SxiIioDVg+yGxcqm1AQkoGjpxVwVlui8/ih+KWMC+pYxERURuxfJBZKFNpEJecjlMVNejiZI/Vs6IwoJu71LGIiKgdWD7I5P12oRYzVqbjXFU9/NwckDo7Cj18XKWORURE7cTyQSbteIkaj3yegQs1WnT3dELq7Gh06+IkdSwiIuoAlg8yWVlnKjEz5SDUmib08XfDmllR8HZVSB2LiIg6iOWDTFLayfP469pMaBr1GBrcBckJw6B0tJc6FhERGQDLB5mc73JKMf+Lw2jUCdzeyxsrYiPhKOcEcUREloLlg0zKxowivLj5KPQCGD/AHx9MHQS5HSeIIyKyJCwfZDI+TTuNJTtOAACmRwXhzUn9YMsJ4oiILA7LB0lOCIF3d+Vh+b7TAIDHbw/D82N7c4I4IiILxfJBktLpBV7Zmov16UUAgOfHhmPOHWESpyIios7E8kGSaWjSY8GX2dieUwqZDHj7/v6YHhUkdSwiIupkLB8kifoGHeasy8K+vPOwt5Xhg2mD8JcBAVLHIiIiI2D5IKNT1Tdi9uqDOPjbJTjY22BFbCTu6O0jdSwiIjISlg8yqvPVWsR/noHjpWq4OtghJWEYhnb3kDoWEREZEcsHGc3ZS3WIS85A4YVaeLnIsWZWNCIC3KSORURERsbyQUaRX1GDuOR0lKo06OruiNTZ0QjxcpY6FhERSYDlgwxKpxfIKKxERbUGPq4OiArxwPESNeJTMlBZ24AePi5YmxgFf6Wj1FGJiEgiLB9kMDtzS7F423GUqjTNyzyc5ajTNkHTpMeAbkqsmhkFD2e5hCmJiEhqLB9kEDtzSzEn9RDEH5ZX1jYAAHr5umDd7Gi4OnBmWiIia8cZu6jDdHqBxduOX1M8rqbWNMFJzq5LREQsH2QAGYWVLU61XE+ZSoOMwkojJSIiIlPG8kEdVlF94+LR1u2IiMiysXxQh/m4Ohh0OyIismwsH9RhQ4Lc4Whv2+p6GQB/5eVht0RERCwf1CHaJh3mbcxGfaPuuutlv/9z0YQI2NrIrrsNERFZF5YPardabRNmrTqIncfKILe1wV9vD4W/suWpFT+lA5bHDsHYfv4SpSQiIlPDsY/ULlV1DUhIOYjs4io4yW3x2SNDMaKHF54bE37NHU55xIOIiK7G8kFtVq7WIC45HSfLa+DuZI9VM6MwKNAdAGBrI0NMmKe0AYmIyKSxfFCbFF2sw4zkX1BcWQ9fNwXWJkajl6+r1LGIiMiMsHzQTcsrq0ZccjoqqrUI9nRCamI0Aj2cpI5FRERmhuWDbsqhokuYmXIQqvpGhPu5Ys2sKPi48b4dRETUdiwf9Kf2n7qAx9Zmoq5BhyFB7khJiILSiRPEERFR+7B80A3tzC3FUxuy0aDT49aeXvg0LpITxBERUYfwW4Ra9eXBYrzwTQ70Ari3vx8+mDYICrvW72RKRER0M1g+6LpW/qcAb373KwBg2tBAvD25P+/XQUREBsHyQS0IIfD+7pP4x958AMBjt4Vi4bhwyGQsHkREZBgsH9RMrxd4bdsxrDlwBgDwtzG98cQdYSweRERkUCwfBABo1Onx7KYj2JpdApkMeH1iP8QND5Y6FhERWSCWD4KmUYcn1h3C3hMVsLOR4e9TB2LioK5SxyIiIgvF8mHl1JpGzF6diYzCSijsbLA8dgjuCveVOhYREVkwlg8rdrFGi/iUDOSeU8NVYYfkhGGICvGQOhYREVk4lg8rVVJVj9jkdBScr4WnsxyrZ0WhX1el1LGIiMgKsHxYoYLzNYhdmY4SlQYBSgekzo5GqLeL1LGIiMhKsHxYmdxzKsR/noGLtQ0I9XZGamI0AtwdpY5FRERWhOXDimQUViJx1UFUa5vQr6sbVs+MgqeLQupYRERkZWza+oSffvoJEyZMQEBAAGQyGbZs2dJivRACr776Kvz9/eHo6IjRo0fj1KlThspL7fTjiQrEJaejWtuEqBAPrH90OIsHERFJos3lo7a2FgMHDsTHH3983fXvvvsuPvroI6xYsQLp6elwdnbGmDFjoNFoOhyW2ufbIyV4dE0mtE163BXugzWzouDmYC91LCIislJtPu0ybtw4jBs37rrrhBD48MMP8fLLL2PixIkAgDVr1sDX1xdbtmzBQw891LG01Gapv5zBK1tzIQQwcVAA/u/BgbC3bXPnJCIiMhiDfgsVFhairKwMo0ePbl6mVCoRHR2NAwcOXPc5Wq0WarW6xYM6TgiBj3/Mx8tbLhePuOHB+GDqIBYPIiKSnEG/icrKygAAvr4t75Dp6+vbvO6PlixZAqVS2fwIDAw0ZCSrJITA0h0n8N6uPADAk3f1wOsT+8LGhhPEERGR9CT/a/DChQuhUqmaH8XFxVJHMms6vcALXx/Fpz8VAABeHt8Hz9zTmzPTEhGRyTDoUFs/Pz8AQHl5Ofz9/ZuXl5eXY9CgQdd9jkKhgELBUReGoG3S4ekvsvHvo2WwkQFLJw/A1GE8kkRERKbFoEc+QkJC4Ofnhz179jQvU6vVSE9PR0xMjCH/KPqDuoYmzF6diX8fLYPc1gYfPzyExYOIiExSm4981NTUID8/v/nnwsJCZGdnw8PDA0FBQZg/fz7efPNN9OzZEyEhIXjllVcQEBCASZMmGTI3XUVV14iZqzJwqKgKTnJbfBoXiVt7eksdi4iI6LraXD4yMzNx5513Nv+8YMECAEB8fDxWrVqF5557DrW1tXjsscdQVVWFkSNHYufOnXBwcDBcampWUa3BI8kZOFFWDaWjPVJmDsOQoC5SxyIiImqVTAghpA5xNbVaDaVSCZVKBTc3N6njmLTiyjrEJqfjzMU6eLsqsDYxCuF+fM+IiMj42vL9zbldzNTJ8mrEJaejXK1FoIcjUhOjEezpLHUsIiKiP8XyYYayi6uQkJKBqrpG9PJ1wdrEaPi68bQWERGZB5YPM/Pf/At4dE0maht0GBjojlUJw9DFWS51LCIiopvG8mFGvj9WhrkbDqOhSY8RPTzxr7ihcFbwPyEREZkXfnOZia+zzuK5r3Og0wuM6euLj6YPhsLOVupYREREbcbyYQY+31+I17cfBwA8ENkNSyf3hx0niCMiIjPF8mHChBD48IdTWLbnFAAgcWQIXrq3DyeIIyIis8byYaL0eoHXtx/Hqv/+BgB45u5emHtXD04QR0REZo/lwwQ16fR47qscfHP4HABg8X19EX9Ld2lDERERGQjLh4nRNOowd/1h/PBrOWxtZPj7gwMxaXBXqWMREREZDMuHCanRNuHR1Zk4UHARCrvLM9OOjvCVOhYREZFBsXyYiMraBiSkZCDnrAouCjusjB+K4aGeUsciIiIyOJYPE1CqqkdccgbyK2rg4SzH6plR6N9NKXUsIiKiTsHyIbHfLtRixsp0nKuqh7/SAWsTo9HDx0XqWERERJ2G5UNCx0vUeOTzDFyo0SLEyxlrE6PQrYuT1LGIiIg6FcuHRLLOVGJmykGoNU2I8HfD6llR8HZVSB2LiIio07F8SCDt5Hn8dW0mNI16DOveBSvjh0HpaC91LCIiIqNg+TCy7TklePqLbDTqBO7o7Y3lMyLhKOcEcUREZD1YPoxoQ0YRXtx8FEIAfxngj/enDoLcjhPEERGRdWH5MJIVaaexdMcJAMDD0UF4Y2I/2HKCOCIiskIsH51MCIF3d+Vh+b7TAIA5d4ThuTG9OUEcERFZLZaPTqTTC7yyNRfr04sAAC+MC8fjt4dJnIqIiEhaLB+dpKFJjwVfZmN7TilkMuDt+/tjelSQ1LGIiIgkx/LRCeobdJizLgv78s7D3laGD6cNxvgB/lLHIiIiMgksHwamqm9E4qqDyDxzCY72tlgRF4nbe3lLHYuIiMhksHwY0PlqLeI/z8DxUjVcHeywauYwRAZ7SB2LiIjIpLB8GMjZS3WIS85A4YVaeLkosGZWFCIC3KSORUREZHJYPgwgv6IGccnpKFVp0NXdEamzoxHi5Sx1LCIiIpPE8tFBR8+qEJ+SgcraBvTwcUFqYjT8lA5SxyIiIjJZLB8dcOD0RTy6JhM12iYM7KZEyswoeDjLpY5FRERk0lg+2umH4+V4Yv0hNDTpERPqic/ih8JFwbeTiIjoz/Dbsh02Hz6LZzflQKcXuDvCF/+YPhgO9pyZloiI6GawfLTRmgO/4dWtxwAAkwd3xbsPDICdLWemJSIiulksHzdJCIF/7s3H33efBAAk3NIdr/4lAjacmZaIiKhNWD5ugl4v8Na/f0Xy/kIAwPzRPTFvVE/OTEtERNQOLB9/okmnxwvfHMVXWWcBAK/+JQKzRoZInIqIiMh8sXzcgKZRh3kbD2PXsXLY2sjw7pQBmBLZTepYREREZo3loxW12iY8tjYTP+dfhNzOBv+cPhj39PWTOhYREZHZY/m4jqq6BiSkHER2cRWc5bb4LH4obgnzkjoWERGRRWD5+INytQZxyek4WV4Ddyd7rJoZhUGB7lLHIiIishgsH1c5c7EWscnpKK6sh6+bAqmJ0ejp6yp1LCIiIovC8vG7E2VqxCVn4Hy1FsGeTkhNjEagh5PUsYiIiCwOyweAQ0WXMDPlIFT1jQj3c8WaxCj4uHJmWiIios5g9eXjP6fO47E1Wahv1CEyuAs+jx8GpZO91LGIiIgsltWUD51eIKOwEhXVGvi4OiAqxAO7j5fhqQ3ZaNDpcWtPL3waFwknudW8JURERJKwim/anbmlWLztOEpVmuZlSkd7qOsbIQCM7++P96cNhMKOM9MSERF1NosvHztzSzEn9RDEH5ar6hsBACPCPPHR9MGw5QRxRERERmHRc8Hr9AKLtx2/pnhcreBCrdHyEBERkYWXj4zCyhanWq6nVKVBRmGlkRIRERGRRZePiuobF4+2bkdEREQdZ9Hl42bv1cF7ehARERmPRZePqBAP+Csd0NqlpDIA/srLw26JiIjIOCy6fNjayLBoQgQAXFNArvy8aEIER7oQEREZkUWXDwAY288fy2OHwE/Z8tSKn9IBy2OHYGw/f4mSERERWSeLv88HcLmA3B3hd80dTnnEg4iIyPisonwAl0/BxIR5Sh2DiIjI6ln8aRciIiIyLSwfREREZFQsH0RERGRUBi8fr732GmQyWYtHeHi4of8YIiIiMlOdcsFp37598cMPP/zvD7GzmutaiYiI6E90Siuws7ODn59fZ7w0ERERmblOuebj1KlTCAgIQGhoKGbMmIGioqJWt9VqtVCr1S0eREREZLkMXj6io6OxatUq7Ny5E8uXL0dhYSFuvfVWVFdXX3f7JUuWQKlUNj8CAwMNHYmIiIhMiEwIITrzD6iqqkJwcDDef/99JCYmXrNeq9VCq9U2/6xWqxEYGAiVSgU3N7fOjEZEREQGolaroVQqb+r7u9OvBHV3d0evXr2Qn59/3fUKhQIKhaL55ytdiKdfiIiIzMeV7+2bOabR6eWjpqYGp0+fRlxc3E1tf+X0DE+/EBERmZ/q6moolcobbmPw0y7PPvssJkyYgODgYJSUlGDRokXIzs7G8ePH4e3t/afP1+v1KCkpgaurK2Qy65n47crppuLiYqs83cT9t+79B/geWPv+A3wPzH3/hRCorq5GQEAAbGxufEmpwY98nD17FtOnT8fFixfh7e2NkSNH4pdffrmp4gEANjY26Natm6FjmQ03Nzez/NAZCvffuvcf4Htg7fsP8D0w5/3/syMeVxi8fGzcuNHQL0lEREQWhHO7EBERkVGxfJgIhUKBRYsWtRj5Y024/9a9/wDfA2vff4DvgTXtf6ff54OIiIjoajzyQUREREbF8kFERERGxfJBRERERsXyQUREREbF8mFEy5cvx4ABA5pvIBMTE4MdO3Y0r9doNEhKSoKnpydcXFwwZcoUlJeXS5i4cy1duhQymQzz589vXmbp78Frr70GmUzW4hEeHt683tL3HwDOnTuH2NhYeHp6wtHREf3790dmZmbzeiEEXn31Vfj7+8PR0RGjR4/GqVOnJExsWN27d7/mMyCTyZCUlATA8j8DOp0Or7zyCkJCQuDo6IiwsDC88cYbLeYDsfTPQHV1NebPn4/g4GA4OjrilltuwcGDB5vXW/r+AwAEGc23334rvvvuO3Hy5EmRl5cnXnzxRWFvby9yc3OFEEI8/vjjIjAwUOzZs0dkZmaK4cOHi1tuuUXi1J0jIyNDdO/eXQwYMEDMmzevebmlvweLFi0Sffv2FaWlpc2P8+fPN6+39P2vrKwUwcHBIiEhQaSnp4uCggKxa9cukZ+f37zN0qVLhVKpFFu2bBFHjhwR9913nwgJCRH19fUSJjecioqKFv/9d+/eLQCIH3/8UQhh+Z+Bt956S3h6eort27eLwsJCsWnTJuHi4iKWLVvWvI2lfwamTp0qIiIiRFpamjh16pRYtGiRcHNzE2fPnhVCWP7+CyEEy4fEunTpIlauXCmqqqqEvb292LRpU/O6X3/9VQAQBw4ckDCh4VVXV4uePXuK3bt3i9tvv725fFjDe7Bo0SIxcODA666zhv1//vnnxciRI1tdr9frhZ+fn3jvvfeal1VVVQmFQiE2bNhgjIhGN2/ePBEWFib0er1VfAbGjx8vZs2a1WLZ5MmTxYwZM4QQlv8ZqKurE7a2tmL79u0tlg8ZMkS89NJLFr//V/C0i0R0Oh02btyI2tpaxMTEICsrC42NjRg9enTzNuHh4QgKCsKBAwckTGp4SUlJGD9+fIt9BWA178GpU6cQEBCA0NBQzJgxA0VFRQCsY/+//fZbDB06FA8++CB8fHwwePBgfPbZZ83rCwsLUVZW1uI9UCqViI6Otpj34GoNDQ1ITU3FrFmzIJPJrOIzcMstt2DPnj04efIkAODIkSPYv38/xo0bB8DyPwNNTU3Q6XRwcHBosdzR0RH79++3+P2/wuBzu9CNHT16FDExMdBoNHBxccHmzZsRERGB7OxsyOVyuLu7t9je19cXZWVl0oTtBBs3bsShQ4danN+8oqyszOLfg+joaKxatQq9e/dGaWkpFi9ejFtvvRW5ublWsf8FBQVYvnw5FixYgBdffBEHDx7EU089Bblcjvj4+Ob99PX1bfE8S3oPrrZlyxZUVVUhISEBgHX8P/DCCy9ArVYjPDwctra20Ol0eOuttzBjxgwAsPjPgKurK2JiYvDGG2+gT58+8PX1xYYNG3DgwAH06NHD4vf/CpYPI+vduzeys7OhUqnw1VdfIT4+HmlpaVLHMori4mLMmzcPu3fvvqb1W4srf7sDgAEDBiA6OhrBwcH48ssv4ejoKGEy49Dr9Rg6dCjefvttAMDgwYORm5uLFStWID4+XuJ0xpecnIxx48YhICBA6ihG8+WXX2LdunVYv349+vbti+zsbMyfPx8BAQFW8xlYu3YtZs2aha5du8LW1hZDhgzB9OnTkZWVJXU0o+FpFyOTy+Xo0aMHIiMjsWTJEgwcOBDLli2Dn58fGhoaUFVV1WL78vJy+Pn5SRPWwLKyslBRUYEhQ4bAzs4OdnZ2SEtLw0cffQQ7Ozv4+vpa/HvwR+7u7ujVqxfy8/Ot4jPg7++PiIiIFsv69OnTfOrpyn7+cXSHJb0HV5w5cwY//PADZs+e3bzMGj4Df/vb3/DCCy/goYceQv/+/REXF4enn34aS5YsAWAdn4GwsDCkpaWhpqYGxcXFyMjIQGNjI0JDQ61i/wGWD8np9XpotVpERkbC3t4ee/bsaV6Xl5eHoqIixMTESJjQcEaNGoWjR48iOzu7+TF06FDMmDGj+d8t/T34o5qaGpw+fRr+/v5W8RkYMWIE8vLyWiw7efIkgoODAQAhISHw8/Nr8R6o1Wqkp6dbzHtwRUpKCnx8fDB+/PjmZdbwGairq4ONTcuvHltbW+j1egDW9RlwdnaGv78/Ll26hF27dmHixInWs/9SX/FqTV544QWRlpYmCgsLRU5OjnjhhReETCYT33//vRDi8hC7oKAgsXfvXpGZmSliYmJETEyMxKk719WjXYSw/PfgmWeeEfv27ROFhYXi559/FqNHjxZeXl6ioqJCCGH5+5+RkSHs7OzEW2+9JU6dOiXWrVsnnJycRGpqavM2S5cuFe7u7mLr1q0iJydHTJw40eKGGep0OhEUFCSef/75a9ZZ+mcgPj5edO3atXmo7TfffCO8vLzEc88917yNpX8Gdu7cKXbs2CEKCgrE999/LwYOHCiio6NFQ0ODEMLy918IDrU1qlmzZong4GAhl8uFt7e3GDVqVHPxEEKI+vp68cQTT4guXboIJycncf/994vS0lIJE3e+P5YPS38Ppk2bJvz9/YVcLhddu3YV06ZNa3GPC0vffyGE2LZtm+jXr59QKBQiPDxc/Otf/2qxXq/Xi1deeUX4+voKhUIhRo0aJfLy8iRK2zl27dolAFx3vyz9M6BWq8W8efNEUFCQcHBwEKGhoeKll14SWq22eRtL/wx88cUXIjQ0VMjlcuHn5yeSkpJEVVVV83pL338hhJAJcdVt5YiIiIg6Ga/5ICIiIqNi+SAiIiKjYvkgIiIio2L5ICIiIqNi+SAiIiKjYvkgIiIio2L5ICIiIqNi+SAiIiKjYvkgIiIio2L5ICIiIqNi+SAiIiKjYvkgIiIio/p/pBrlrHjea54AAAAASUVORK5CYII="
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Soru 1-G / Ogive\n",
|
||||
"values, base = np.histogram(veri, binEdges)\n",
|
||||
"kum = np.cumsum(values)\n",
|
||||
"plt.plot(base[1:], kum, marker=\"o\", linestyle='-')"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
Reference in New Issue
Block a user